Autoimmune diseases involve multiple genes. While functions of these genes are largely unknown, some may be related to an intrinsic hyperresponsiveness of B cells. B-cell responses are controlled by signaling thresholds through the B-cell antigen receptor (BCR) complex. The B1 isoform of type II IgG Fc receptors (FcgammaRIIB1) is exclusively expressed on B cells and serves as a negative regulator for inhibiting BCR-elicited activation. Thus, its allelic variants associated with functional deficits could be examined for possible associations with susceptibility to autoimmune diseases. We found that there are three types of polymorphisms in the reported FcgammaRIIB transcription regulatory regions in mouse strains. Compared to normal healthy mouse strains (group III), autoimmune disease-prone strains (group I) share three deletion sites: two in the promoter region and one in the third intron. Strains (group II) that per se are not autoimmune-prone, but have potentials to accelerate autoimmune diseases share two deletion sites in the third intron: one identical to that in group I and the other unique to group II. These polymorphisms correlated well with extents of down-regulation of FcgammaRIIB1 expression in germinal-center B cells upon stimulation with antigens and up-regulation of IgG antibody responses. Our data imply that these FcgammaRIIB polymorphisms are selected evolutionarily for natural defense against pathogens, and that such polymorphisms may, in turn, form the basis of one aspect of autoimmune susceptibility.
Although aflatoxins (AFs) have been shown to be immune-suppressive agents in animals, the potential role of AFs in modifying the distribution and function of leukocyte subsets in humans has never been assessed. We examined the cellular immune status of 64 Ghanaians in relation to levels of aflatoxin B1 (AFB1)-albumin adducts in plasma. The percentages of leukocyte immunophenotypes in peripheral blood, CD4+ T cell proliferative response, CD4+ T(h) and CD8+ T cell cytokine profiles and monocyte phagocytic activity were measured using flow cytometry. NK cell cytotoxic function was determined by perforin and tumor necrosis factor-alpha expression in CD3-CD56+ NK cells. AFB1-albumin adducts levels ranged from 0.3325 to 2.2703 (mean = 0.9972 +/- 0.40, median = 0.9068) pmol mg(-1) albumin. Study participants with high AFB1 levels had significantly lower percentages of CD3+ and CD19+ cells that showed the CD69+ activation marker (CD3+CD69+ and CD19+CD69+) than participants with low AFB1 levels (P = 0.002 for both). Also, the percentages of CD8+ T cells that contained perforin or both perforin and granzyme A were significantly lower in participants with high AFB1 levels compared with those with low AFB1 (P = 0.012 for both). Low levels of CD3+CD69+ (r = -0.32, P = 0.016) and CD19+CD69+ (r = -0.334, P = 0.010) cells were significantly associated with high AFB1 levels using correlation analysis. By multivariate analysis, there were strong negative correlations between the percentages of these cells (CD3+CD69+: b = -0.574, P = 0.001, and CD19+CD69+: b = -0.330, P = 0.032) and AFB1 levels. These alterations in immunological parameters in participants with high AFB1 levels could result in impairments in cellular immunity that could decrease host resistance to infections.
FcγRIIB1 molecules serve as negative feedback regulator for B cell Ag receptor-elicited activation of B cells; thus, any impaired FcγRIIB1 function may possibly be related to aberrant B cell activation. We earlier found deletion polymorphism in the Fcgr2b promoter region among mouse strains in which systemic autoimmune disease-prone NZB, BXSB, MRL, and autoimmune diabetes-prone nonobese diabetic, but not NZW, BALB/c, and C57BL/6 mice have two identical deletion sites, consisting of 13 and 3 nucleotides. In this study, we established congenic C57BL/6 mice for NZB-type Fcgr2b allele and found that NZB-type allele down-regulates FcγRIIB1 expression levels in germinal center B cells and up-regulates IgG Ab responses. We did luciferase reporter assays to determine whether NZB-type deletion polymorphism affects transcriptional regulation of Fcgr2b gene. Although NZW- and BALB/c-derived segments from position −302 to +585 of Fcgr2b upstream region produced significant levels of luciferase activities, only a limited activity was detected in the NZB-derived sequence. EMSA and Southwestern analysis revealed that defect in transcription activity in the NZB-derived segment is likely due to absence of transactivation by AP-4, which binds to the polymorphic 13 nucleotide deletion site. Our data imply that because of the deficient AP-4 binding, the NZB-type Fcgr2b allele polymorphism results in up-regulation of IgG Ab responses through down-regulation of FcγRIIB1 expression levels in germinal center B cells, and that such polymorphism may possibly form the basis of autoimmune susceptibility in combination with other background contributing genes.
Both malaria and intestinal helminths are endemic in sub-Saharan Africa, and their co-infection occurs commonly. This cross-sectional study assessed the prevalence of malaria and intestinal helminth co-infection in a sample of > 700 pregnant women in Ghana and identified risk factors for co-infection. The prevalence of malaria infection, intestinal helminth infection(s), and co-infection was 36.3%, 25.7%, and 16.6%, respectively. Women with intestinal helminth infection(s) were 4.8 times more likely to have malaria infection. Young age, low income, being single, and being primigravid were each associated with increased odds of co-infection. These associations were present when assessed separately for primi- and multigravid women, but the strength of associations varied considerably for the two groups of women. Young age had the strongest association among both primigravid (odds ratio = 5.2) and multigravid (odds ratio = 3.2) women. This study shows relatively high prevalence rates of malaria, intestinal helminths, and co-infection in pregnant women in Ghana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.