Purpose
This study aims to investigate photosensing characteristics of SiC and GaN nanowire-based devices through exposure to UV light. The photocurrent transients have been modeled to determine rise and decay process time constants. The 1D-semiconductor nanowires can exhibit higher light sensitivity compared to bulk materials because of their large surface area to volume ratio and the quantum size effects.
Design/methodology/approach
Nanowire devices have been fabricated through dielectrophoresis for integrating nanowires onto pre-patterned electrodes (10 nm Ti/ 90 nm Au) with a spacing about 3 µm onto SiO2/Si (doped) substrate. The photocurrent measurements were carried out under room temperature conditions with UV light of 254 nm wavelength.
Findings
SiCNWs yield very short rise and decay time constants of 1.3 and 2.35 s, respectively. This fast response indicates an enhanced surface recombination of photoexcited electron-hole pairs. Conversely, GaNNWs yield longer rise and decay time constants of 10.3 and 15.4 s, respectively. This persistent photocurrent suggests a reduced surface recombination process for the GaNNWs.
Originality/value
High selective UV light sensitivity, small size, very short response time, low power consumption and high efficiency are the most important features of nanowire-based devices for new and superior applications in photodetectors, photovoltaics, optical switches, image sensors and biological and chemical sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.