Isotropic polydimethylsiloxane (PDMS)-based magnetorheological elastomers (MREs) filled with various contents of graphene oxide (GO) additive were fabricated by the solution blending-casting method in this work. The morphologies of the produced MREs were characterized, and the results indicate that the uniform distribution of GO sheets and carbonyl iron particles (CIPs) becomes difficult with the increase of GO content. The steady-state and dynamic shear properties of the MREs under different magnetic field strengths were evaluated using parallel plate rheometer. It was found that the physical stiffness effect of GO sheets leads to the increase of the zero-field shear modulus with increasing GO content under both the steady-state and dynamic shear loads. The chemical crosslinking density of PDMS matrix decreases with the GO content due to the strong physical crosslinking between GO and the PDMS matrix. Thus, the MREs filled with higher GO content exhibit more fluid-like behavior. Under the dynamic shear load, the absolute MR effect increases with the GO content due to the increased flexibility of the PDMS matrix and the dynamic self-stiffening effect occurring in the physical crosslinking interfaces around GO sheets. The highest relative MR effect was achieved by the MREs filled with 0.1 wt.% GO sheets. Then, the relative MR effect decreases with the further increase of GO content due to the improved zero-field modulus and the increased agglomerations of GO and CIPs. This study shows that the addition of GO sheets is a possible way to prepare new MREs with high MR effect, while simultaneously possessing high zero-field stiffness and load bearing capability.
The primary goal of this work is to test and model the magnetorheological (MR) properties of the isotropic magnetorheological elastomers (MREs) under the coupled static–dynamic compressive loads. Isotropic MREs with different contents of magnetic particles were fabricated based on the silicone elastomer. In order to apply the controllable magnetic field to the MREs and directly measure the viscoelastic force of the deformed MREs during the dynamic tests, an electromagnet with a magnetic flux density of up to 0.9 T was developed and integrated into an electric dynamic test system. The stress–strain hysteresis loops of the produced MREs were experimentally characterized under the dynamic compressive loads coupled with different static pre-strains. Effects of particle content, strain amplitude, static pre-strain and load frequency on the MR properties of the MREs were examined in terms of the characteristics of the hysteresis loops, as well as the MR effects in the storage modulus, loss modulus and pre-stress. The results revealed that irrespective of the applied magnetic field, the deformation behavior of the produced MREs was in an approximate linear viscoelastic state when the strain amplitude was less than 7.5%. Both the absolute and relative MR effects increase with the increasing particle content, and decrease with the increasing strain amplitude. Only the absolute MR effect increases with the increasing pre-strain. While varying the load frequency has almost no effect on the MR effect of the MREs. Furthermore, two empirical models were proposed respectively for predicting the storage modulus and loss modulus of the MREs as functions of the magnetic flux density, particle content, strain amplitude, pre-strain and load frequency. The graphical comparison and quantitative evaluation show that the proposed models can give effective predictions of the storage and loss moduli of the produced MREs under the applied load conditions in this work.
The isotropic magnetorheological elastomers (MREs) containing three different contents of carbonyl iron particles (CIPs) based on silicone rubber were prepared, and their quasi-static compression properties under various magnetic fields were characterized by a material testing machine with specialized electromagnet. The magneto-induced actuation stress at zero strain condition as well as the deformation stress during compression process of MREs were tested. According to the magnetization model and demagnetizing energy theory, a magneto-induced actuation model of isotropic MREs was proposed. Meanwhile, a magneto-hyperelastic model was established for calculating the magnetic field- and strain-dependent deformation stress of MREs via combining the Neo–Hookean model, the magnetization model, and the magnetic dipole theory. Therefore, a new constitutive model was established to describe compression properties of isotropic MREs by considering the magneto-induced actuation and the magneto-hyperelastic behaviors. Finally, the effect of CIP content and model applicability were analyzed. It is verified that the developed compression model was able to exactly predict the compression properties of isotropic MREs with various CIP contents over the magnetic field range varying from zero field to saturation field by adopting a set of unified model parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.