The importance of polysaccharides is increasing globally due to their role as a significant source of dietary prebiotics in the human diet. In the present study, in order to maximize the yield of crude polysaccharides from Pinus densiflora, response surface methodology (RSM) was used to optimize a two-stage extraction process consisting of steam explosion and water extraction. Three independent main variables, namely, the severity factor (Ro) for the steam explosion process, the water extraction temperature (°C), and the ratio of water to raw material (v/w), were studied with respect to prebiotic sugar content. A Box-Behnken design was created on the basis of the results of these single-factor tests. The experimental data were fitted to a second-order polynomial equation for multiple regression analysis and examined using the appropriate statistical methods. The data showed that both the severity factor (Ro) and the ratio of water to material (v/w) had significant effects on the prebiotic sugar content. The optimal conditions for the two-stage process were as follows: a severity factor (Ro) of 3.86, a water extraction temperature of 89.66 °C, and a ratio of water to material (v/w) of 39.20. Under these conditions, the prebiotic sugar content in the extract was 332.45 mg/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.