A novel procedure for hydride-induced anionic cyclization has been developed. It includes the reduction of a biaryl bromo-nitrile with a nucleophilic aromatic substitution (S(N)Ar). A range of polysubstituted 6-H-phenanthridines were so obtained in moderate to good yield with good substrate tolerance. This method involves a concise transition-metal-free process and was applied to synthesize natural alkaloids.
An efficient and concise procedure for the ligand-free copper-catalyzed cascade reaction of C–O and C–N bond coupling was developed to afford various (NH)-phenanthridinones.
A novel procedure for the cascade reaction of the addition of a Grignard reagent to a nitrile with a copper-catalyzed C-N bond coupling was developed, which afforded various polysubstituted phenanthridines in moderate to good yields with tolerance for a wide variety of substrates. Experimental data demonstrated that the reaction proceeded more likely through a Cu(I/III) catalytic cycle.
A novel synthesis of phenanthridines is developed utilizing the addition reaction of Grignard reagents to nitriles followed by copper‐catalyzed intramolecular C‐N bond coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.