As a highly crystalline and renewable natural polymer nanomaterial, chitin nanocrystals (ChNCs) have attracted intense interest in the biomedical field. The structure of a ChNC is composed of an acetylglucosamine unit containing two hydroxyl groups and an acetyl group. The acetyl group can be converted to the active amino group through deacetylation, which is under the condition of maintaining the rod-like morphology and high crystalline property and is beneficial for the following modification and potential application. We investigated the relationship between different treatments and varied crystallinities of the modified ChNC, which obtained surface amino groups and aldehyde groups and retained high crystallinity. The natural biomolecules were covalently immobilized on the surface of the ChNC. The etherification was performed based on the hydroxyl groups. Based on the amino groups and the aldehyde groups, the carboxyamine and Knoevenagel condensation reactions were realized on ChNCs. Finally, natural biomolecule-modified ChNCs showed no or low cytotoxicity, antibacterial properties, and high antioxidant properties, which extended their potential biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.