In recent times, Additive Manufacturing (AM) has been applied rapidly in almost all fields. This study was conducted to apply the additive manufacturing into an acoustic application by 3D printing the Micro-Perforated Panels (MPP) through Fused Deposition Modelling (FDM) made of Polylactic Acid (PLA) reinforced with wood fibers. MPP were fabricated by altering its perforation volume. Later, the effect of perforation volume on acoustic absorption of the fabricated MPP was measured using the two-microphone impedance tube method as per ISO 10534-2 standard. The result shows altering the perforation volume affects the acoustic absorption of the MPP. MPP with a thickness of 2 mm and a perforation diameter of 0.2 mm shows the maximum sound absorption coefficient of 0.93 at 2173 Hz. It is made possible to absorb the 3D printed MPP made of natural fiber reinforced composite at different spectrums by altering the perforation volume.
In current times, noise pollution is especially apparent in urban areas due to rapid development in transportation, industrialization, and urbanization. The worsening noise pollution is detrimental to human health and behaviour as it can contribute to disorders and psychological disturbance. Thus, noise regulation is crucial and must be addressed with immediate effect. Micro-perforated panels (MPP) can be a potential solution to mitigate noise on a commercial scale. Researchers have addressed the mechanics behind the enhancement of acoustic absorption through micro-perforation and some suggestions have been made, such as the effect of structural variation on sound absorption performance. Hence, this research aims at optimizing the sound absorption performance of an MPP by determining the connection between thickness and perforation size with sound absorption coefficient. Three cases were considered: (i) varying perforation size, (ii) varying thickness, and (iii) varying perforation size and thickness simultaneously. Based on the Maa prediction model, the sound absorption performance for all three cases have been simulated through the MATLAB software. Results show that the increase in both thickness and perforation size together increases the peak value of sound absorption coefficient (SAC). It also shifts the peak towards the higher frequency region and narrows the bandwidth. The findings of this study indicate the potential of thick MPPs as commercial sound absorbers by adjusting the size of perforations. Thicker and sturdier MPPs with optimal acoustic resistance and reactance can act as reliable sound absorbers for sound insulation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.