The contemporary use of nanomedicines for cancer treatment has been largely limited to serving as carriers for existing therapeutic agents. Here, we provide definitive evidence that, the metallofullerenol nanomaterial Gd@C82(OH)22, while essentially not toxic to normal mammary epithelial cells, possesses intrinsic inhibitory activity against triple-negative breast cancer cells. Gd@C82(OH)22 blocks epithelial-to-mesenchymal transition with resultant efficient elimination of breast cancer stem cells (CSCs) resulting in abrogation of tumour initiation and metastasis. In normoxic conditions, Gd@C82(OH)22 mediates these effects by blocking TGF-β signalling. Moreover, under hypoxic conditions found in the tumour microenvironment, cellular uptake of Gd@C82(OH)22 is facilitated where it functions as a bi-potent inhibitor of HIF-1α and TGF-β activities, enhancing CSC elimination. These studies indicate that nanomaterials can be engineered to directly target CSCs. Thus, Gd-metallofullerenol is identified as a kind of non-toxic CSC specific inhibitors with significant therapeutic potential.
The death rates of hepatocellular carcinoma (HCC) are extremely high due to the paucity of therapeutic options. Animal models and anecdotal clinical evidence indicate a potential role of hGH and hPRL in HCC. However, the prognostic relevance and the functional role of tumor expression of these hormones in human HCC are not defined. Herein, we analyzed the mRNA and protein expression of hGH and hPRL in histopathological samples of non-neoplastic liver and HCC by in situ hybridization, PCR and immunohistochemistry techniques. Increased mRNA and protein expression of both hormones was observed in HCC compared with non-neoplastic liver tissues. hGH expression was significantly associated with tumor size and tumor grade. No significant association was observed between the expression of hPRL and any histopathological features. Amplification of both hGH and hPRL genes in HCC was observed when compared to non-neoplastic tissue. Expression of both hGH and hPRL was associated with worse relapse-free and overall survival in HCC patients. In vitro and in vivo functional assays performed with HCC cell lines demonstrated that autocrine expression of hGH or hPRL in HCC cells increased STAT3 activation, oncogenicity and tumor growth while functional antagonism with hGH-G120R significantly reduced these parameters. Hence, tumor expression of hGH/hPRL is associated with a worse survival outcome for patients with HCC and hGH/hPRL function as autocrine/paracrine promoters of HCC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.