A rapid, simple, accurate, and affordable method for the detection of drug-resistant tuberculosis is very critical for the selection of antimicrobial therapy and management of patient treatment. High-resolution melting curve analysis has been used for the detection of rifampin resistance in Mycobacterium tuberculosis and has shown promise. We did a systematic review and metaanalysis of published studies to evaluate the accuracy of high-resolution melting curve analysis for the detection of rifampin resistance in clinical M. tuberculosis isolates. We searched the PubMed, BIOSIS Previews, and Web of Science databases to identify studies and included them according to predetermined criteria. We used the DerSimonian-Laird random-effects model to calculate pooled measures and applied Moses' constant for linear models to fit the summary receiver operating characteristic curve. According to the selection criteria, most of the identified studies were excluded, and only seven studies were included in the final analysis. The overall sensitivity of the high-resolution melting curve analysis was 94% (95% confidence interval [CI], 92% to 96%), and the overall specificity was very high at 99% (95% CI, 98% to 100%). The values for the pooled positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 63.39 (95% CI, 30.21 to 133.00), 0.06 (95% CI, 0.04 to 0.09), and 892.70 (95% CI, 385.50 to 2,067.24), respectively. There was no significant heterogeneity across all included studies for the measurements we evaluated. The summary receiver operating characteristic curve for the same data shows an area of 0.99 and a Q* value of 0.97. High-resolution melting curve analysis has high sensitivity and specificity for the detection of rifampin resistance in clinical M. tuberculosis isolates. This method might be a good alternative to conventional drug susceptibility tests in clinical practice.
Cardiovascular disease is the leading cause of human mortality and morbidity worldwide. Atherosclerosis (AS) is the underlying pathological responsible in most acute and severe cardiovascular diseases including myocardial infarction and stroke. However, current drugs applied to the treatment of AS are not clinically effective, and there is a large residual risk of cardiovascular disease and multiple side effects. Increasing evidence supports a close relationship between microorganisms and the incidence of AS. Recent data have shown that probiotics can improve multiple key factors involved in the development and progression of AS, including cholesterol metabolism imbalance, endothelial dysfunction, proinflammatory factor production, macrophage polarization, intestinal flora disturbance, and infection with pathogenic microorganisms, and therefore probiotics have attracted great interest as a novel potential “medicine”. This review is aimed at summarizing the effects of probiotics on various influencing factors, and providing valuable insights in the search for early prevention and potential therapeutic strategies for AS.
Coronary heart disease (CHD) is caused by coronary atherosclerosis and has a high morbidity and mortality rate worldwide. There are challenges in both early screening and treatment of CHD. The appearance and development of CHD is a complex metabolic disorder process. Therefore, to search for new biomarkers of CHD, we analyzed the peripheral blood metabolome in patients with CHD. In the study, a plasma metabolite, 4′-Phosphopantetheine (4-PPanSH), which was discovered by HPLC-MS/MS, as peripheral blood 4-PPanSH decreases, the degree of coronary blockage gradually aggravates. In addition, the 4-PPanSH supplement limited atherosclerotic plaque formation and endothelial injury in mice. Further, in vascular endothelial cells, 4-PPanSH effectively inhibited ROS generation and ox-LDL accumulation. In summary, 4-PPanSH was associated with the degree of coronary stenosis, and the 4-PPanSH supplement reduced atherosclerotic plaque generation, which could be associated with 4-PPanSH acting as a potent antioxidant that inhibits ROS generation and alleviates vascular endothelial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.