Geologists have made several advances in applying multifractal theory in geology; however, some questions such as a large statistical workload and low efficiency remain unanswered. Thus, this study proposes an image recognition–based method for calculating fault multifractality. First, grayscale processing and binarization of the fault distribution map were performed. The image was then gridded, and the grids were numbered. Subsequently, computer image recognition technology was used to count the number of faults in each grid as a replacement for manual counting. Finally, the fractal dimensions of the faults were calculated using a multifractal box-counting algorithm. This method was successfully applied to fracture studies of the Maokou Formation in southeast Sichuan. Compared to the conventional approach, the proposed method demonstrated considerably improved work efficiency and accuracy. The results showed that the faults in the study area exhibited good statistical self-similarity in the scale range, indicating fractal characteristics. The fractal dimensions of faults with different orientations and the planar distribution of the fractal dimension contours indicate tectonic stages and stress magnitude in the study area. The results indicate that the tectonic setting of southeast Sichuan was formed primarily during the Indosinian, Yanshanian, and Himalayan periods. From the Indosinian to the early Yanshanian periods, NE-trending faults with relatively large fractal dimensions developed under NW–SE compressional tectonic stress. From the Late Yanshanian to Early Himalayan, EW-trending faults were formed by relatively weak N–S compressional stress and had the lowest fractal dimensions. The NW-trending faults formed by intense NE–SW compressional tectonic stress in the Late Himalayan region had the highest fractal dimensions. To promote oil and gas migration and ensure that faults do not destroy the caprock, oil and gas reservoirs must be in a relatively mild tectonic environment. Thus, the fractal dimensions of faults in favorable areas should be neither too high nor too low. The relationship between the fractal dimensions of faults and well test results in southeast Sichuan indicates that the region along the wells “ls1–xia14–guan3” (with fractal dimensions of 1.49–1.57) in the study area is a relatively favorable region for oil and gas preservation.
Pyrite, as a characteristic mineral in organic-rich marine shale, is a significant index for the interpretation of paleoredox conditions. In this study, based on drilling cores and focused ion beam-scanning electron microscopy (FIB-SEM), the occurrence, diameter and particle size distribution of pyrites from 32 samples obtained from the Wufeng–Longmaxi Formation in the southeast Sichuan Basin were analyzed. The results show that pyrite displays various occurrences at the macro-scale and micro-scale. At the macro-scale (mm–cm), pyrite laminations, nodular pyrites and lenticular pyrites can be found from drilling cores. At the micro-scale (nm–µm), the common occurrences of pyrite are pyrite framboids, euhedral pyrites and infilled pyrite framboids. According to the formation mechanism of pyrites, pyrites can be divided into syngenetic pyrites and diagenetic pyrites. The infilled pyrite framboids are categorized as diagenetic pyrites. The mean pyrite framboid diameters (Mean, D) range from 2.94 µm to 5.33 µm (average of 4.26 µm), with most samples showing pyrite framboid diameters from 3.5 μm to 4.8 μm. Most of the diameters of the framboid microcrystals (Mean, d) are less than 0.4 µm. Therefore, according to the (Mean, D) and the (Mean, d), the pyrite framboids can be divided into three sizes: syngenetic framboids (SF, D < 4.8 µm, d ≤ 0.4 µm), early diagenetic framboids (EDF, D > 4.8 µm, d > 0.4 µm) and late diagenetic framboids (LDF, D < 4.8 µm, d > 0.4 µm). Additionally, box-and-whisker charts of the diameter, standard deviation/skewness value of the mean diameter of pyrite framboids (Mean, D) and the ratio of trace elements indicate that the sedimentary water body was a euxinic–dysoxic environment. Euxinic conditions dominated the Wufeng Formation to the lower part of the Long11-3 section, which is beneficial for the preservation of organic matter. However, the middle-upper part of the Long13-Long12 sub-member is a dysoxic sedimentary environment.
Recognition of the existence of an Andean-type continental margin in southern Tibet prior to its collision with India has provided crucial constraints on the formation of the Tibetan Plateau and South Asian climate evolution. Here, we focused on well-dated Late Cretaceous successions in the Linzhou Basin and determined the elevation changes from sea level to high mountains in the Gangdese magmatic arc in southern Tibet. Our results show that the Linzhou Basin was still submerged in the Tethyan Sea at around 92 Ma when it accumulated Cenomanian (ca. 105−92 Ma) shallow-marine orbitolinid-bearing limestones (Takena Formation); these limestones are unconformably overlain by Campanian (83−78 Ma) fluvial-lacustrine deposits (Shexing Formation) after an ∼9 m.y. depositional hiatus. A prominent unconformity between the tightly folded Shexing Formation and gently tilted overlying Paleocene−Eocene Linzizong successions represents the formation of the regional Lhasaplano ca. 70 Ma, which may have been linked to the rise of an Andean-type Gangdese mountain range along the southern margin of the Lhasa terrane. Using carbonate oxygen isotope and clumped isotope thermometry data from the Shexing Formation paleosols, we quantitatively documented the rise of the Andean-type Gangdese Mountains with a peneplain surface at an elevation of 2.7 +0.5/−0.9 km above sea level prior to onset of the India-Asia collision ca. 65−63 Ma. This scenario of surface gain may have been an isostatic compensation response to the crust thickening to over 50 km during the Late Cretaceous. Subsequently, the surface isostatically rose to its near-present elevation of ∼4.6 km due to the removal of overthickened mantle lithosphere and revival of intense Gangdese magmatism by 56 Ma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.