This study proposes a synthetic aperture radar (SAR) target-recognition method based on the fused features from the multiresolution representations by 2D canonical correlation analysis (2DCCA). The multiresolution representations were demonstrated to be more discriminative than the solely original image. So, the joint classification of the multiresolution representations is beneficial to the enhancement of SAR target recognition performance. 2DCCA is capable of exploiting the inner correlations of the multiresolution representations while significantly reducing the redundancy. Therefore, the fused features can effectively convey the discrimination capability of the multiresolution representations while relieving the storage and computational burdens caused by the original high dimension. In the classification stage, the sparse representation-based classification (SRC) is employed to classify the fused features. SRC is an effective and robust classifier, which has been extensively validated in the previous works. The moving and stationary target acquisition and recognition (MSTAR) data set is employed to evaluate the proposed method. According to the experimental results, the proposed method could achieve a high recognition rate of 97.63% for the 10 classes of targets under the standard operating condition (SOC). Under the extended operating conditions (EOC) like configuration variance, depression angle variance, and the robustness of the proposed method are also quantitively validated. In comparison with some other SAR target recognition methods, the superiority of the proposed method can be effectively demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.