The constructivist paradigm opens abundant opportunities for effective knowledge construction in which student build knowledge and continually evaluated and improved their knowledge. The teaching mode under constructivist pedagogy redefines the role of students and the teachers and their interrelationships by creating a nurturing environment. By adapting constructivist framework, this article demonstrates how the variation of learning practices was critical in facilitating Primary 4 students in Singapore to carry out seamless science learning. The variation of learning practices enables the students to explore a particular scientific concept through various learning experience across the contexts. The study adapted the framework of the Objects of Constructivist Learning Model for the improvement of the seamless science learning design. When redesigning the lesson, a conscious effort was made by the teacher to create relevant patterns of variation, that is, varying certain critical aspect(s) while keeping other aspects of the object of learning invariant in order to help students discern those critical aspects. The findings contribute knowledge to how the Theory of Variation can be used in analyzing seamless learning as well as designing for constructivist learning experiences. The findings have also demonstrated that the complementary practice of constructivist pedagogy with variation theory as a viable and effective approach in seamless science learning, at which it deepened students' understanding through constructing the critical aspects of a phenomenon. Engagement with primary school students in experiencing the variations allowed the translation of theory into practice.
Argumentation is a scientific literacy practice focused on developing scientific thinking skills associated with problem-solving. As computing has become an integral part of our world, computational thinking skills are requisite for successful problem-solving. The significant effect of computational thinking applications on the efficacy of scientific literacy practices is increasingly acknowledged. In this article, we propose a framework that conceptualizes the constructivist argumentation as a context for problem-solving by applying five computational thinking dimensions, viz. algorithmic design, decomposition, abstraction, evaluation, and generalization. The framework emphasizes two aspects, students’ problem-solving capability and quality of argumentation. Drawing from the literature on scientific argumentation and problem-solving, we argue that the application of computational thinking dimensions in science learning is currently overlooked in the instructional environment. To nurture higher order thinking skills and to engage effective problem-solvers, our framework incorporates four Computational Thinking-Argumentation design principles to support instructional innovation in the teaching and learning of science at the secondary school level, viz. 1) developing problem-solving competencies and building capability in solving uncertainties throughout scientific inquiry; 2) developing creative thinking and cooperativity through negotiation and evaluation; 3) developing algorithmic thinking in talking and writing; 4) developing critical thinking in the processes of abstraction and generalization.
Computational thinking (CT) is one of the skills that are critical for problem-solving in a technology-driven society. Although the importance of CT as a goal in education is increasingly acknowledged, there is scant research on developing pre-service teachers’ CT competencies so that they can integrate CT in their lesson design. In this study, drawing from the experiential learning framework, we discuss the design of a module using a novel approach that is a hybridisation of plugged and unplugged CT approaches. The aim is to facilitate pre-service teachers in making connections between CT and their teaching contexts. Thirty-eight pre-service teachers attended the CT module for twelve weeks. The results indicated that the participants developed better CT competencies by integrating, justifying and reflecting CT in their lesson design. This study demonstrates the importance of providing a practical CT module to conduct unplugged activities for pre-service teachers, especially for those without prior computing knowledge, before introducing CT in the context of programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.