Cholelithiasis was the main etiology in Jiangxi, China, and hyperlipidemia ranked second. There were different etiological proportion according to age, sex, and severity. Furthermore, the higher mortality rate occurred in severe idiopathic and hyperlipidemic pancreatitis, although there was no clear association between mortality and age.
pK a is an important property in the lead optimization process since the charge state of a molecule in physiologic pH plays a critical role in its biological activity, solubility, membrane permeability, metabolism, and toxicity. Accurate and fast estimation of small molecule pK a is vital during the drug discovery process. We present MolGpKa, a web server for pK a prediction using a graph-convolutional neural network model. The model works by learning pK a related chemical patterns automatically and building reliable predictors with learned features. ACD/pK a data for 1.6 million compounds from the ChEMBL database was used for model training. We found that the performance of the model is better than machine learning models built with human-engineered fingerprints. Detailed analysis shows that the substitution effect on pK a is well learned by the model. MolGpKa is a handy tool for the rapid estimation of pK a during the ligand design process. The MolGpKa server is freely available to researchers and can be accessed at https://xundrug.cn/molgpka.
Pancreatic cancer is an aggressive malignancy with an extremely poor prognosis. The human ether-a-go-go-related potassium channel (HERG1) is a human rapid delayed rectifier, which is involved in many crucial cellular events. In this article, we find that HERG1 expression is dramatically increased both in pancreatic cancer tissues and cell lines, and that increased HERG1 expression is significantly related to the development of pancreatic cancer. HERG1 silencing in pancreatic cancer-derived cell lines PANC-1 and CFPAC-1 strongly inhibits their malignant capacity in vitro as well as tumorigenicity and metastasis in nude mice. In addition, HERG1 is identified as a direct target of miR-96, which is downregulated in pancreatic cancer tissues and cell lines. Ectopic expression of miR-96 represses the HERG1 expression in pancreatic cancer and significantly inhibits malignant behavior of pancreatic cancer cells in vitro and in vivo.Collectively, our findings suggest that miR-96 acts as a tumor suppressor in pancreatic cancer and may therefore serve as a useful therapeutic target for the development of new anticancer therapy.
Background and AimsOsteopontin, SDF-1α, and MMP-2 are important secreted molecules involved in the pathophysiology of human hepatocellular carcinoma (HCC). This study investigates the effect of the SDF-1α/CXCR4 axis on expression and activity of MMP-2 induced by osteopontin.MethodsThe expression of CXCR4, SDF-1α, MMP-2 and their associated cellular signaling cascades, involving Akt and MAP Kinases, were determined by Western blotting. The activities of MMP-2 and MMP-9 were assayed by gel zymography. The role of the osteopontin receptors integrin αvβ3 and CD44v6 was evaluated using neutralizing antibodies. We also established CXCR4-deficient SMMC7721 cell lines by transfection with miRNA-CXCR4 plasmids and determined cell invasion activity in a transwell assay.ResultsIn comparison with untreated cells, recombinant human osteopontin (rhOPN) up-regulated CXCR4, SDF-1α, and MMP-2 expression about 5-, 4-, and 6-fold on the protein levels through binding to integrin αvβ3 and CD44v6 in hepatocellular carcinoma cells (SMMC7721 and HepG2). Inhibition of the SDF-1α/CXCR4 axis down-regulated the rhOPN-induced MMP-2 expression and activity. rhOPN also activated Akt, p38 and JNK. Down-regulation of CXCR4 decreased the rhOPN-induced invasion in SMMC7721 cells.ConclusionThese results indicate that rhOPN up-regulates MMP-2 through the SDF-1α/CXCR4 axis, mediated by binding to integrin αvβ3 and CD44v6 and activating the PI-3K/Akt and JNK pathways in HepG2 and SMMC7721 cells. Therefore, the osteopontin-SDF-1α/CXCR4-MMP-2 system may be a new therapeutic target for treating HCC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.