Citrus is an important cash crop in the world, and huanglongbing (HLB) is a destructive disease in the citrus industry. To efficiently detect the degree of HLB stress on large-scale orchard citrus trees, an UAV (Uncrewed Aerial Vehicle) hyperspectral remote sensing tool is used for HLB rapid detection. A Cubert S185 (Airborne Hyperspectral camera) was mounted on the UAV of DJI Matrice 600 Pro to capture the hyperspectral remote sensing images; and a ASD Handheld2 (spectrometer) was used to verify the effectiveness of the remote sensing data. Correlation-proven UAV hyperspectral remote sensing data were used, and canopy spectral samples based on single pixels were extracted for processing and analysis. The feature bands extracted by the genetic algorithm (GA) of the improved selection operator were 468 nm, 504 nm, 512 nm, 516 nm, 528 nm, 536 nm, 632 nm, 680 nm, 688 nm, and 852 nm for the HLB detection. The proposed HLB detection methods (based on the multi-feature fusion of vegetation index) and canopy spectral feature parameters constructed (based on the feature band in stacked autoencoder (SAE) neural network) have a classification accuracy of 99.33% and a loss of 0.0783 for the training set, and a classification accuracy of 99.72% and a loss of 0.0585 for the validation set. This performance is higher than that based on the full-band AutoEncoder neural network. The field-testing results show that the model could effectively detect the HLB plants and output the distribution of the disease in the canopy, thus judging the plant disease level in a large area efficiently.
To suppress noise in signals, a denoising method called AIC–SVD is proposed on the basis of the singular value decomposition (SVD) and the Akaike information criterion (AIC). First, the Hankel matrix is chosen as the trajectory matrix of the signals, and its optimal number of rows and columns is selected according to the maximum energy of the singular values. On the basis of the improved AIC, the valid order of the optimal matrix is determined for the vibration signals mixed with Gaussian white noise and colored noise. Subsequently, the denoised signals are reconstructed by inverse operation of SVD and the averaging method. To verify the effectiveness of AIC–SVD, it is compared with wavelet threshold denoising (WTD) and empirical mode decomposition with Savitzky–Golay filter (EMD–SG). Furthermore, a comprehensive indicator of denoising (CID) is introduced to describe the denoising performance. The results show that the denoising effect of AIC–SVD is significantly better than those of WTD and EMD–SG. On applying AIC–SVD to the micro-vibration signals of reaction wheels, the weak harmonic parameters can be successfully extracted during pre-processing. The proposed method is self-adaptable and robust while avoiding the occurrence of over-denoising.
Micro-vibrations on-board a satellite have degrading effects on the performance of certain payloads like observation cameras. The major sources of vibrations include momentum wheels, solar array drives, other rotary mechanical equipment, etc. These vibrations result in loss of the pointing precision and image quality of the payload through intricate transfer paths. To improve the accuracy of a satellite system with many vibration sources and complex transfer paths, it is necessary to determine the main transfer path of vibration. In this study, a path identification method is proposed and applied to the transfer system from the momentum wheel to the camera mount. First, the observer/Kalman filter identification (OKID) algorithm is used to acquire the state-space equation of each path subsystem. Then, the subsystem order is obtained based on the slope of the singular entropy increment. In the next phase, combined with the measured disturbance force of the momentum wheel, the displacement response of the target point is predicted. Finally, the dominant transfer path of vibration is achieved by calculating the vibration contribution of each path to the response point. The results indicate that the dominant transfer path is the axial path of the horizontal momentum wheel, which contributes to the vibration of the camera mount at most. Effective vibration reduction measures should be taken to this path to suppress the vibration signal. In comparing the identified displacement response with the finite element response of the camera mount under different noise conditions, the correlation coefficients are >0.85, which proves the accuracy and anti-noise capability of the identification method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.