A better understanding of the genetics of seedling characteristics in rice could be helpful in improving rice varieties. Zhenshan 97 and Minghui 63, the parents of Shanyou 63, an elite hybrid developed during the last decade in China, vary greatly with respect to their physiological and morphological traits at the seedling growth stage. In this study, we used a population of 240 recombinant inbred lines derived from a cross between Zhenshan 97 and Minghui 63 to identify quantitative trait loci (QTL) for seedling characteristics. All plant material was grown in hydroponic culture. Data for the following characters were collected at 30 days and 40 days post-sowing: plant height, shoot dry matter weight (SDW), maximum root length, root dry weight (RDW), total dry weight, and root-shoot ratio (the ratio of SDW to RDW). Analysis using composite interval mapping detected 16 QTL for the six traits in 30-day-old seedlings. Of these 16 QTL, Minghui 63 alleles increased trait values at only two of them. The QTL in the vicinity of R3166 on chromosome 5 simultaneously influenced PH, SDW, MRL, RDW, and TDW in the same direction. Twenty QTL were detected for the same traits in the 40-day-old seedlings. However, at this stage Minghui 63 alleles increased trait values at eight QTL. The QTL linked to R3166 also affected PH, SDW, MRL, RDW, and TDW. Only four QTL were common to the two stages. These results clearly indicate that different genes (QTL) control the same traits during different time intervals. Zhenshan 97 alleles had positive effects during the first 30 days of seedling growth, but thereafter the positive effects of Minghui 63 alleles on seedling growth gradually became more pronounced.
Rice is a major food crop in the world. Owing to the shortage of rural labor and the development of agricultural mechanization, direct seeding has become the main method of rice cultivation. At present, the main problems faced by direct seeding of rice are low whole seedling rate, serious weeds, and easy lodging of rice in the middle and late stages of growth. Along with the rapid development of functional genomics, the functions of a large number of genes have been confirmed, including seed vigor, low-temperature tolerance germination, low oxygen tolerance growth, early seedling vigor, early root vigor, resistance to lodging, and other functional genes related to the direct seeding of rice. A review of the related functional genes has not yet been reported. In this study, the genes related to direct seeding of rice are summarized to comprehensively understand the genetic basis and mechanism of action in direct seeding of rice and to lay the foundation for further basic theoretical research and breeding application research in direct seeding of rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.