This paper proposes a novel synchronizer 'Harpoon-Shift' aiming at improving the comfort and efficiency of gearbox, meanwhile, simplifying the shifting control strategy for multi-speed electric vehicles. It will overcome one of the biggest shortcomings of traditional synchronizer system with frictional cone clutch.Experiment is established to investigate the torque and speed responses during the engagement of gears pairs. Then, based on previous testing results, the relationship of the peak torque and minimum speed difference to implement gear shifting with various spring coefficients is investigated. In addition, a mathematical model of the Harpoon-Shift system is developed to simulate the engagement process. The simulation results of system transient responses are validated against the data measured on testing rig. The model is then improved to study the impact of the rotating inertia, speed and speed difference on the torsional vibration and required time of engagement. Both of the simulation and experimental results show the significant improvement of proposed synchronizer to conventional cone clutch synchronizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.