Rationale: Currently, there are no clear guidelines to determine whether and when to perform surgical hip repair in patients with acute stroke and hip fracture.Patient concerns: In this case report, we report a case of 75-year-old woman admitted with left hip pain and limited mobility for 1 month.Diagnoses: Patient had a history of acute cerebral infarction 42 days ago, and diagnosed with a left intertrochanteric fracture at another hospital 30 days ago.Intervention: Patient was treated with closed reduction and internal fixation with proximal femoral nail anti-rotation.Outcomes: At 2-year follow-up, the patient's basic function was restored. The fracture healed well, and the Harris hip score was 75.Lessons: Without consistent guidelines, individualized treatment strategies including surgical methods and timing of surgery should be made to weigh the risks and benefits for patients with acute stroke and intertrochanteric fractures.Abbreviations: CRIF = closed reduction and internal fixation, PFNA = proximal femoral nail anti-rotation.
Objective
Gastrointestinal dysfunction seriously affects the prognosis and quality of life of patients with multiple fractures. However, experimental evidence of this relationship is lacking. Here we describe a newly developed mouse model of postoperative gastrointestinal dysfunction after multiple fractures.
Methods
Trauma severity was assessed using the injury severity score (ISS). Based on the ISS, a multiple fracture model was established in mice as follows: limb fractures with pelvic fractures and multiple rib fractures; limb fractures with multiple rib fractures; closed fracture of both forelegs with pelvic fracture and rib fractures; closed limb fractures; limb fracture with pelvic fracture; spinal fractures; hind leg fractures with pelvic fractures; pelvic fracture with multiple rib fractures; closed fracture of both fore legs with pelvic fracture; and closed fracture of both fore legs with multiple rib fractures. In each model group, gastrointestinal motility was assayed and the histopathology of the small intestine was examined. Western blot and immunohistochemical analyses of jejunal tissue were performed to detect c‐kit protein expression, the level of which was compared with that of a control group. The results of ANOVA are expressed as mean ± standard deviation.
Results
In mice with multiple fractures, food intake was greatly reduced, consistent with histopathological evidence of an injured intestinal epithelium. The jejunal tissue of mice in groups a, c, f, and h was characterized by extensively necrotic and exfoliated intestinal mucosal epithelium and inflammatory cell infiltration in the lamina propria. In the gastrointestinal function assay, gastrointestinal motility was significantly reduced in groups a, b, c, f, and g; these group also had a higher ISS (
p
< 0.01). The expression of c‐kit protein in groups with gastrointestinal dysfunction was significantly up‐regulated (
p
< 0.001) compared with the control group. The close correlation between c‐kit expression and the ISS indicated an influence of trauma severity on gastrointestinal motility.
Conclusion
Gastrointestinal dysfunction after multiple fractures was successfully reproduced in a mouse model. In these mice, c‐kit expression correlated with gastrointestinal tissue dysfunction and might serve as a therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.