The aim of the present study was to construct tissue-engineered laryngeal cartilage with a hollow, semi-flared shape using a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHH) scaffold. Porous PHBHH was prepared and formed into a hollow, semi-flared shape, and the cell-material composites were cultured for one week in vitro prior to implantation in vivo. Cells of the nine rabbits of the experimental group were filled and encapsulated in the myofascial flap-shaping material composite for in situ implantation. The three rabbits in the control group were treated with the shaping material without the chondrocytes. Cartilage regeneration was assessed at six, 12 and 18 weeks after surgery. In the experimental group, the shape and porosity of the material were ideal, the cells exhibited good adhesion with the material and the myofascial flap blood supply was rich. The engineered laryngeal cartilage with the hollow, semi-flared shape was ideally formed, and the cartilage formed at six weeks after the surgery. Further maturation of the cartilage was observed at 12 and 18 weeks after the surgery. PHBHH was a suitable material for the formation of a hollow, semi-flared shape with good cellular compatibility. Myofascial flap filling and wrapping can be used to build tissue-engineered laryngeal cartilage with a hollow, semi-flared shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.