Numerous documented ethnopharmacological properties have been associated with Swietenia macrophylla (Meliaceae), with its seed extract reported to display anti-hypoglycemic activities in diabetic rats. In the present study, three compounds isolated from the seeds of S. macrophylla were tested on a modified ELISA binding assay and showed to possess PPARγ ligand activity. They were corresponded to PPARγ-mediated cellular response, stimulated adipocyte differentiation but produced lower amount of fat droplets compared to a conventional anti-diabetic agent, rosiglitazone. The up-regulation of adipocytes was followed by increased adipocyte-related gene expressions such as adiponectin, adipsin, and PPARγ. The S. macrophylla compounds also promoted cellular glucose uptake via the translocation of GLUT4 glucose transporter.
Background Brown adipocytes are known to promote energy expenditure and limit weight gain to combat obesity. Averrhoa bilimbi , locally called belimbing buluh (DBB), is mainly used as an ethnomedicine in the treatment of metabolic disorders including diabetes mellitus, hypertension and obesity. The present study aims to investigate the browning activity on white adipocytes by A. bilimbi leaf extract and to evaluate the potential mechanisms. Methods Ethanolic leaf extract of A. bilimbi was exposed to Myf5 lineage precursor cells to stimulate adipocyte differentiation. Protein expressions of brown adipocyte markers were determined through high content screening analysis and validated through western blotting. Mito Stress Test assay was conducted to evaluate the cellular oxygen consumption rate upon A. bilimbi treatment. Results A. bilimbi ethanolic leaf extract exhibited an adipogenesis effect similar to a PPARgamma agonist. It also demonstrated brown adipocyte differentiation in myoblastic Myf5-positive precursor cells. Expression of UCP1 and PRDM16 were induced. The basal metabolic rate and respiratory capacity of mitochondria were increased upon A. bilimbi treatment. Conclusions The findings suggest that Averrhoa bilimbi ethanolic leaf extract induces adipocyte browning through PRDM16 activation and enhances mitochondria activity due to UCP1 up-regulation. Electronic supplementary material The online version of this article (10.1186/s12906-019-2640-3) contains supplementary material, which is available to authorized users.
Averrhoa bilimbi is a fast-growing tree widely found in countries of tropical Asia. Due to easy accessibility and traditional knowledge, various parts of this plant are adopted as folk medicine and a natural health remedy. Recently, beneficial effects of bilimbi in combating obesity including its potential antihyperlipidemic and hypoglycemic activities have been discovered. This paper reports the successive isolation and purification of bioactive compounds from the leaf of bilimbi that corresponds to brown adipocyte activation. Bilimbi ethanolic extract underwent bioassay-guided partitioning and fractionation. The n-hexane partition exhibited highest brown adipogenesis potential via adipomyocytes differentiation. Further isolation of this active partition yielded 10 fractions. Active fractions with the highest brown adipogenesis potential were further evaluated via the adipomyocytes assay. Chemical structures of the constituents were elucidated by gas chromatography-mass spectrometry (GC-MS). Major phytocomponents in the n-hexane partition include hexadecanoic acid, phytol, 9-Octadecenoic acid (Z)- and squalene.
Averrhoa bilimbi is a fast-growing tree widely found in countries of tropical Asia. Due to easy accessibility and traditional knowledge, various parts of this plant are adopted as folk medicine and a natural health remedy. Recently, beneficial effects of bilimbi in combating obesity including its potential antihyperlipidemic and hypoglycemic activities have been discovered. This paper reports the successive extraction, partitioning and fractionation of bioactive compounds from the leaf of bilimbi that corresponds to brown adipocyte activation. In this study, the bilimbi crude ethanolic extract underwent bioassay-guided partitioning with increading polarity namely n-hexane (n-Hex), ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous (H2O). The n-hexane partition extract exhibited highest brown adipogenesis potential via adipomyocytes differentiation. Further fractionation of this active partition extract yielded 10 fractions. Gas chromatography-mass spectrometry (GC/MS was used to analyse the chemical constituents of active fractions.
Averrhoa bilimbi is a fast-growing tree widely found in countries of tropical Asia. Due to easy accessibility and traditional knowledge, various parts of this plant are adopted as folk medicine and a natural health remedy. Recently, beneficial effects of bilimbi in combating obesity including its potential antihyperlipidemic and hypoglycemic activities have been discovered. This paper reports the successive isolation and purification of bioactive compounds from the leaf of bilimbi that corresponds to brown adipocyte activation. Bilimbi ethanolic extract underwent bioassay-guided partitioning and fractionation. The n-hexane partition exhibited highest brown adipogenesis potential via adipomyocytes differentiation. Further isolation of this active partition yielded 10 fractions. Active fractions with the highest brown adipogenesis potential were further evaluated via the adipomyocytes assay. Chemical structures of the constituents were elucidated by gas chromatography-mass spectrometry (GC-MS). Major phytocomponents in the n-hexane partition include hexadecanoic acid, phytol, 9-Octadecenoic acid (Z)- and squalene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.