Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3's phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses.
The dN/dS ratio between nonsynonymous and synonymous substitution rates has been used extensively to identify codon positions involved in adaptive processes. However, the accuracy of this approach has been questioned, and very few studies have attempted to validate experimentally its predictions. Using the coat protein (CP) of Potato virus Y (PVY; genus Potyvirus, family Potyviridae) as a case study, we identified several candidate positively selected codon positions that differed between clades. In the CP of the N clade of PVY, positive selection was detected at codon positions 25 and 68 by both the softwares PAML and HyPhy. We introduced nonsynonymous substitutions at these positions in an infectious cDNA clone of PVY and measured the effect of these mutations on virus accumulation in its two major cultivated hosts, tobacco and potato, and on its efficiency of transmission from plant to plant by aphid vectors. The mutation at codon position 25 significantly modified the virus accumulation in the two hosts, whereas the mutation at codon position 68 significantly modified the virus accumulation in one of its hosts and its transmissibility by aphids. Both mutations were involved in adaptive trade-offs. We suggest that our study was particularly favorable to the detection of adaptive mutations using dN/dS estimates because, as obligate parasites, viruses undergo a continuous and dynamic interaction with their hosts that favors the recurrent selection of adaptive mutations and because trade-offs between different fitness traits impede (or at least slow down) the fixation of these mutations and maintain polymorphism within populations.
Evolutionary processes responsible for parasite adaptation to their hosts determine our capacity to manage sustainably resistant plant crops. Most plant-parasite interactions studied so far correspond to gene-for-gene models in which the nature of the alleles present at a plant resistance locus and at a pathogen pathogenicity locus determine entirely the outcome of their confrontation. The interaction between the pepper pvr2 resistance locus and Potato virus Y (PVY) genome-linked protein VPg locus obeys this kind of model. Using synthetic chimeras between two parental PVY cDNA clones, we showed that the viral genetic background surrounding the VPg pathogenicity locus had a strong impact on the resistance breakdown capacity of the virus. Indeed, recombination of the cylindrical inclusion (CI) coding region between two PVY cDNA clones multiplied by six the virus capacity to break down the pvr2(3) -mediated resistance. High-throughput sequencing allowed the exploration of the diversity of PVY populations in response to the selection pressure of the pvr2(3) resistance. The CI chimera, which possessed an increased resistance breakdown capacity, did not show an increased mutation accumulation rate. Instead, selection of the most frequent resistance-breaking mutation seemed to be more efficient for the CI chimera than for the parental virus clone. These results echoed previous observations, which showed that the plant genetic background in which the pvr2(3) resistance gene was introduced modified strongly the efficiency of selection of resistance-breaking mutations by PVY. In a broader context, the PVY CI coding region is one of the first identified genetic factors to determine the evolvability of a plant virus.
The Nc(tbr) and Ny(tbr) genes in Solanum tuberosum determine hypersensitive reactions, characterized by necrotic reactions and restriction of the virus systemic movement, toward isolates belonging to clade C and clade O of Potato virus Y (PVY), respectively. We describe a new resistance from S. sparsipilum which possesses the same phenotype and specificity as Nc(tbr) and is controlled by a dominant gene designated Nc(spl). Nc(spl) maps on potato chromosome IV close or allelic to Ny(tbr). The helper component proteinase (HC-Pro) cistron of PVY was shown to control necrotic reactions and resistance elicitation in plants carrying Nc(spl), Nc(tbr), and Ny(tbr). However, inductions of necrosis and of resistance to the systemic virus movement in plants carrying Nc(spl) reside in different regions of the HC-Pro cistron. Also, genomic determinants outside the HC-Pro cistron are involved in the systemic movement of PVY after induction of necroses on inoculated leaves of plants carrying Ny(tbr). These results suggest that the Ny(tbr) resistance may have been involved in the recent emergence of PVY isolates with a recombination breakpoint near the junction of HC-Pro and P3 cistrons in potato crops. Therefore, this emergence could constitute one of the rare examples of resistance breakdown by a virus which was caused by recombination instead of by successive accumulation of nucleotide substitutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.