The acoustics of a straight annular lined duct containing a swirling mean flow is considered. The classical Ingard–Myers impedance boundary condition is shown not to be correct for swirling flow. By considering behaviour within the thin boundary layers at the duct walls, the correct impedance boundary condition for an infinitely thin boundary layer with swirl is derived, which reduces to the Ingard–Myers condition when the swirl is set to zero. The correct boundary condition contains a spring-like term due to centrifugal acceleration at the walls, and consequently has a different sign at the inner (hub) and outer (tip) walls. Examples are given for mean flows relevant to the interstage region of aeroengines. Surface waves in swirling flows are also considered, and are shown to obey a more complicated dispersion relation than for non-swirling flows. The stability of the surface waves is also investigated, and as in the non-swirling case, one unstable surface wave per wall is found.
This paper gives a modified Myers boundary condition in swirling inviscid flow, which differs from the standard Myers boundary condition by assuming a small but non-zero boundary layer thickness. The new boundary condition is derived and is shown to have the correct quadratic error behaviour with boundary layer thickness and also to agree with previous results when the swirl is set to zero. The boundary condition is initially derived for swirling flow with constant azimuthal velocity, but easily extends to radially varying swirling flow, with terms depending on the boundary layer model. The modified Myers boundary condition is then given in the time domain rather than in the frequency domain. The effect of the boundary layer profile is then considered, and shown to be small compared to the boundary layer thickness. The boundary condition is then used to analyse the eigenmodes and Green’s function in a realistic flow. Modelling the thickness of the boundary layer properly is shown to be essential in order to get accurate results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.