BackgroundMicroRNAs circulating in the blood, stabilized by complexation with proteins and/or additionally by encapsulation in lipid vesicles, are currently being evaluated as biomarkers. The consequences of their differential association with lipids/vesicles for their stability and use as biomarkers are largely unexplored and are subject of the present study.MethodsThe levels of a set of selected microRNAs were determined by quantitative reverse-transcription PCR after extraction from sera or vesicle- and non-vesicle fractions prepared from sera. The stability of these microRNAs after incubation with RNase A or RNase inhibitor, an inhibitor of RNase A family enzymes was studied.ResultsThe levels of microRNA-1 and microRNA-122, but not those of microRNA-16, microRNA-21 and microRNA-142-3p, declined significantly during a 5-h incubation of the sera. RNase inhibitor prevented the loss of microRNAs in serum as well as the degradation of microRNA-122, a microRNA not expressed in blood cells, in whole blood. Stabilization of microRNA-122 was also achieved by hemolysis. Prolonged incubation of the sera led to enrichment of vesicle-associated relative to non-vesicle-associated microRNAs. Vesicle-associated microRNAs were more resistant to RNase A treatment than the respective microRNAs not associated with vesicles.ConclusionsSerum microRNAs showed differential stability upon prolonged incubation. RNase inhibitor might be useful to robustly preserve the pattern of cell-free circulating microRNAs. In the case of microRNAs not expressed in blood cells this can also be achieved by hemolysis. Vesicle-associated microRNAs appeared to be more stable than those not associated with vesicles, which might be useful to disclose additional biomarker properties of miRNAs.
SUMMARY BackgroundVitamin D is involved in many biological processes. The role of vitamin D in patients with hepatocellular carcinoma (HCC) remains inconclusive, although there is evolving evidence that vitamin D may modulate cancer development and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.