To investigate the molecular adaptation of influenza viruses during natural interspecies transmission, we performed a phenotypic and genotypic analysis of a low-pathogenic duck H7N3 influenza virus after experimental passages in turkey and quail. Results obtained showed differences in the HA receptor-binding and in NA enzyme activities in viruses recovered after passages in quail, compared to those obtained from passages in turkey. Sequencing of the HA, NA and genes of internal proteins of the viruses obtained from quail and turkey, identified several amino acid substitutions in comparison with the progenitor virus. Of note, in the quail-adapted viruses the emergence of a 23-amino acid deletion in the stalk of the NA and the introduction of a glycosylation site in the HA were a reminiscence of changes typically observed in nature confirming a potential role of the quail in the adaptation of wild birds viruses to domestic poultry.
The development of new antiviral molecules to fight the possible emergence of influenza viruses with pandemic potential is needed. In this study, phosphorothioate oligonucleotides (S-ONs) derived from the packaging signals in the 3' and 5' ends of the viral PB2 RNA were associated with liposomes and tested against influenza virus in vitro. A 15-mer S-ON derived from the 5' end of the viral PB2 RNA, complementary to the 3' end of its coding region (nucleotides 2279-2293) and designated 5-15b, proved markedly inhibitory. The antiviral activity of 5-15b was dose- and time-dependent but was independent of the cell substrate and multiplicity of infection used. Importantly, inhibition of influenza A and B viruses required S-ONs reproducing the respective packaging signals. Furthermore, 5-15b and its antisense derivative S-ON activity did not affect intracellular accumulation of viral RNA. Confocal microscopy showed that 5-15b is clearly nucleophilic. These findings indicate that the packaging signal at the 5' end of the PB2 RNA is an interesting target for the design of new anti-influenza-virus compounds.
In order to investigate viral adaptation mechanisms to poultry, we performed serial in vivo passages of a wild bird low pathogenicity avian influenza isolate of the H7N3 subtype (A/mallard/Italy/33/01) in three different domestic species (chicken, turkey, and Japanese quail). The virus under study was administered via natural routes at the dose of 10(6) egg infective dose50/ 0.1 ml to chickens, turkeys, and quails in order to investigate the clinical susceptibility and the shedding levels after infection. Multiple in vivo passages of the virus were performed by serially infecting groups of five naive birds of each species, with samples collected from a previously infected group. Quails and turkeys were susceptible to infection for 10 serial passages, whereas chickens were susceptible to two cycles of infection only. Infection of chicken with the quail- and turkey-adapted viruses showed an increased pathogenicity and/or shedding, causing more severe clinical signs and/or higher levels of viral excretion compared to the original strain. The data obtained herein suggest that infection of selected avian species may facilitate the adaptation of avian influenza viruses originating from the wild bird reservoir to chicken. This is the first time turkey has been shown to act as a species in which a virus from the wild reservoir can increase its replication activity in other domestic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.