High circulating levels of maternal endothelial dysfunction markers present in pre-eclampsia are associated with decreased NO synthesis in fetal endothelium.
Aim The contribution of apolipoprotein A1 (APOA1), the major apolipoprotein of high‐density lipoprotein (HDL), to endothelium‐dependent vasodilatation is unclear, and there is little information regarding endothelial receptors involved in this effect. Ecto‐F1‐ATPase is a receptor for APOA1, and its activity in endothelial cells is coupled to adenosine diphosphate (ADP)‐sensitive P2Y receptors (P2Y ADP receptors). Ecto‐F1‐ATPase is involved in APOA1–mediated cell proliferation and HDL transcytosis. Here, we investigated the effect of lipid‐free APOA1 and the involvement of ecto‐F1‐ATPase and P2Y ADP receptors on nitric oxide (NO) synthesis and the regulation of vascular tone. Method Nitric oxide synthesis was assessed in human endothelial cells from umbilical veins (HUVECs) and isolated mouse aortas. Changes in vascular tone were evaluated by isometric force measurements in isolated human umbilical and placental veins and by assessing femoral artery blood flow in conscious mice. Results Physiological concentrations of lipid‐free APOA1 enhanced endothelial NO synthesis, which was abolished by inhibitors of endothelial nitric oxide synthase (eNOS) and of the ecto‐F1‐ATPase/P2Y1 axis. Accordingly, APOA1 inhibited vasoconstriction induced by thromboxane A2 receptor agonist and increased femoral artery blood flow in mice. These effects were blunted by inhibitors of eNOS, ecto‐F1‐ATPase and P2Y1 receptor. Conclusions Using a pharmacological approach, we thus found that APOA1 promotes endothelial NO production and thereby controls vascular tone in a process that requires activation of the ecto‐F1‐ATPase/P2Y1 pathway by APOA1. Pharmacological targeting of this pathway with respect to vascular diseases should be explored.
BackgroundMesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo.MethodsMesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO).ResultshWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures.ConclusionThese results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.
Human endothelial progenitor cells (hEPC) are recruited to sites of neovascularization where they differentiate into endothelial cells. The signals/factors responsible for hEPC migration and adhesion to sites of injury are not well understood. Elevated levels of adenosine are known to increase mature endothelial cell migration in response to tissue injury. However, the understanding of the role of adenosine in the physiology of hEPC is very limited. Using quantitative polymerase chain reaction and western blot analyses, we detected the expression of the adenosine receptors A₂A, A₂B, and A₃ in hEPC. Stimulation of adenosine receptors using adenosine or the nonselective agonist adenosine-5'-N-ethylcarboxamide (NECA) increased hEPC migration in 1.4-fold and 2.1-fold (P < 0.01), respectively. Stimulation of hEPC using the A₂A-specific agonist CGS-21680 resembled the effect observed in migration when using adenosine or NECA. Consequently, NECA and CGS-21680-stimulated migration of hEPC were reverted using the A₂A receptor antagonist ZM-241385. NECA-stimulated migration was inhibited in dose-dependent manner using MRS-1523 (Ki of 147 ± 0.016 nM), MRS-1754 (Ki of 1900 ± 0.02 nM), or ZM-241385 (Ki of 0.2 ± 0.01 nM). In conclusion, adenosine stimulates hEPC migration by activating A₂A and A₃ but not A₂B receptors and provides evidence to support a role of adenosine in modulating angiogenic capacity of hEPC.
The bioavailability of nitric oxide (NO) represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE). PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1), which induces endothelial dysfunction by increasing reactive oxygen species (ROS) and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.