Modern domestic and international standards, regulators of the aviation fuel industry, considering the negative impact of the presence of mechanical impurities and water in aviation fuel on the performance and life cycle of aircraft engines, fuel metering equipment, fuel systems of aircraft (A/C), as a threat factor for flight safety, impose high requirements for the purity of aviation fuel while operating aeronautical equipment. At the same time, the causes and sources of water content in jet fuel are a source of economic losses, the most important criterion for the success of the Aerodrome Fueling Complex business. The article considers the task of developing reliable and automated methods as well as technologies for controlling these contaminants, for example for determining water content in aviation fuel when refueling aircraft, and the necessity to minimize an effect of a human factor. The automation of aviation fuel quality monitoring processes, the transition from discrete control methods to continuous ones, from static control methods to dynamic ones (in-line), from indirect methods to direct ones are becoming relevant. The possibilities of end-to-end accounting and analysis of aviation fuel purity parameters at all stages of the aviation fuel life cycle are shown. The article considers the methods and conducts the analysis of known techniques and devices used to determine, measure and indicate actual water content, presence of dissolved, free and total water in jet fuel. The technical solution of continuous automated control of the actual water content level of the jet fuel flow in the processes of aviation fuel supply and aircraft refueling in an information system that provides on-line monitoring and dynamic measurement of the quantitative content of dissolved and free water in the jet fuel flow, is presented. The technical solution for the continuous determination of the quantitative water content in the jet fuel stream is proposed. At the same time, the solution of the problem of monitoring water content in jet fuel is combined with the technological process to control the purification of jet fuel from water. The paper represents an adaptive information management system for continuous monitoring of the water content level of the jet fuel flow, which will allow specialist to substantially increase a level of automatization of aircraft aviation fuel supply technological processes, decrease a negative impact of a human factor, increase economic effectiveness of the aviation fuel supply complex. The system is designed to carry out continuous, automated control (monitoring) of water content in the jet fuel flow at all the stages of the jet fuel movement: receiving, storing and delivering jet fuel and refueling aircraft, in particular fuel and lubricants warehouses (fuel and lubricants), refueling complexes and pre-apron filling points. It can also be used in the fuel system of the aircraft, as a system to prevent water content in the jet fuel. The integration of automation tools will enable us to improve...
In the process of improving gas turbine engines (GTE), increasing the resource and efficiency, there is a constant increase in temperature and pressure of the working fluid. Turbine elements are subjected to high thermomechanical loads and continuous exposure from the aggressive environment. These impacts are especially significant for the working blades of the first stages of the turbine, located in the area of the highest temperatures. One of the most serious types of damage in this case is the corrosive effect on the working blade from the combustion gases entering the flow part of the turbine. The TS-1 fuel used on an aircraft contains sulfur compounds in its composition – elemental sulfur and mercaptans, which in the combustion process, together with sodium and potassium in the air, leads to an aggressive effect on the material of the turbine blade. To ensure the long-term operation of the turbine blades of the turbine at the gas temperature at the turbine inlet up to 800...850 ℃, the content of these products in both fuel and air is limited according to the regulatory and technical documentation. However, it is not yet possible to exclude them completely. The presence of sulfur compounds on the turbine blades of the GTE causes sulfide corrosion. Therefore, the article considers the influence of impurities in fuel and air on the process of sulfide corrosion of the turbine blades material of the turbine. The mechanism of sulfur dissolution in metal oxides or protective coating is presented, as well as the diffusion of sulfur oxide from the coating surface into its depth. The reason for the influence of sodium chloride contained in the air on the corrosion of nickel alloy or the protective coating applied on it has been established. The influence of vanadium in the fuel on the corrosion rate is given. In order to increase the efficiency of the turbine blades when exposed to such an aggressive environment, it is proposed to use a new coating formed from an aqueous suspension and allowing the introduction of chromium into the coating, which provides a higher durability of such a coating in comparison with serial aluminide coatings. The introduction of chromium is ensured by an exothermic reaction occurring during the formation of the coating during heat treatment.
Air transport for the Far East and the Far North is a strategically important mode of transport for most of its part and especially in the Arctic regions. Air transportation plays the most important social and economic role, providing the fastest connection with the rest of Russia and vital transport accessibility of the population of a strategically important region of the Russian Federation. Air transport plays a special role in the largest region of the Russian Federation, the Republic of Sakha (Yakutia), which remains the most isolated and inaccessible region of the country. In the republic, aviation is the only year-round means of transport communication on 85% of the territory. At the same time, the most important factor affecting the year-round provision of transport accessibility for the vast majority of airports in the republic, and especially in the Arctic zone, is the delivery of the required amount of aviation fuel, provided that its consumer properties are preserved. The unique and complex scheme of aviation fuel delivery to the Arctic and remote areas of Yakutia, with up to nine transshipments, leads to the loss of some important parameters of aviation fuel, such as electrical conductivity, and forces airlines flying to the Arctic and remote areas of Yakutia to look for more optimal logistics ways of delivery, storage, ensuring the safety of properties and parameters of aviation fuel. Another factor that directly affects the year-round provision of transport accessibility of the population is the cost of jet fuel, which is about 30 % of the costs of base airlines, such as Yakutia Airlines, where at the base airport Yakutsk the cost of jet fuel in 2021 reached 88 thousand rubles per ton, provided refueling in the wing, with an average value for all airports Russia has about 58 thousand rubles per ton. At the same time, the cost of jet fuel at Arctic airports has approached or has already reached 100 thousand per ton. In order, to find solutions, the authors of this article used a research methodology based on factor analysis using the apparatus of economic and mathematical modeling of the problem of jet fuel delivery due to optimization of the logistics scheme of delivery to remote regions of the Arctic zone. By applying capability assessments correlation and regression analysis, estimation factors for the jet fuel supply chain optimization by optimizing the logistics scheme were carried out. As a result of the research and along with the proposed solutions of practical, technological and economic nature, a regression model is considered on the basis of which the most optimal options for the development of fuel supply of the Republic of Yakutia for air transport in the coming period can be suggested.
The development of modern gas turbine engineering imposes increasingly high requirements for the properties of the alloys used, associated with an increase in gas temperature before the turbine. However, the applicable nickel alloys have low heat resistance at high temperatures. The solution to this problem is achieved through the joint use of a heat-resistant alloy that takes loads at high temperatures, and the application of protective coatings to ensure heat resistance. The coating and the heat-resistant alloy form a complex system. Each component of the system performs the primary and secondary functions in the operation, and the system must meet operational requirements. The choice of the applied coating and its application technology are quite complicated, since its structure and thickness depend on many factors, in particular, on the composition of the original components, temperature, and time parameters of its application, etc. This affects the performance of the formed coating under operating conditions. In recent years, slip coating methods specifically formed from aqueous suspensions have been successfully developed abroad and in our country. This method is technically simple and economical. The quality of the coating formed from the aqueous suspension is determined by the percentage of the suspension composition, its rheological and physical properties, compliance with the technology of its application and processing of parts. In order to understand the mechanism of coating formation from the aqueous suspension, it is necessary to imagine the effect of the suspension parameters on the coating properties. The article presents the results of the study carried out by the computational method of the influence of the aqueous suspension parameters on the quality of the coating obtained. The dependence of the coating thickness on the particle sizes of the powders introduced into the suspension is shown. Calculations of the density and thickness of the obtainable coating from the ratio of the solid and liquid phases of the aqueous suspension are presented. It is indicated that in a real suspension, the influence of the aqueous suspension parameters on the coating parameters being formed is more complex than when performing calculations. This is primarily associated with the fact that in a real suspension there are powder particles of various diameters, in particular aluminum. In addition, the interaction of orthophosphoric acid with the introduced oxides of aluminum, silicon, etc., having molecular dispersion, their chemical interaction complicates considering all these factors in calculations. However, the obtained results of the study allow us to assess the influence of the aqueous suspension composition parameters on the technological and service properties of the obtainable coating obtained by the slip method from this suspension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.