Atherosclerosis plays a key role in the development of cardiovascular diseases, and is often associated with oxidative stress and local inflammation. Thymol, a major polyphenolic compound in thyme, exhibits antioxidant and anti-inflammatory properties. In this study, we measured the in vitro antioxidant activity of thymol, and investigated the effect of thymol on high-fat-diet-induced hyperlipidemia and atherosclerosis. New Zealand white rabbits were fed with regular chow, high-fat and high-cholesterol diet (HC), T3, or T6 (HC with thymol supplementation at 3 mg/kg/d or 6 mg/kg/d, respectively) for 8 weeks. Aortic intimal thickening, serum lipid parameters, multiple inflammatory markers, proinflammatory cytokines, and atherosclerosis-associated indicators were significantly increased in the HC group but decreased upon thymol supplementation. In summary, thymol exhibits antioxidant activity, and may suppress the progression of high-fat-diet-induced hyperlipidemia and atherosclerosis by reducing aortic intimal lipid lesion, lowering serum lipids and oxidative stress, and alleviating inflammation-related responses.
The primary cause of treatment failures in acute myeloid leukemia is usually associated with defects in the apoptotic pathway. Several studies suggest that 2-(4-aminophenyl)-7-methoxybenzothiazole (7-OMe-APBT) may potentially induce apoptosis of cancer cells. Thus, the present study was conducted to explore the cytotoxic effect of 7-OMe-APBT on human leukemia U937 cells. The apoptosis of human leukemia U937 cells induced by 7-OMe-APBT was characterized by an increase in mitochondrial membrane depolarization, procaspase-8 degradation, and tBid production. Down-regulation of FADD blocked 7-OMe-APBT-induced procaspase-8 degradation and rescued the viability of 7-OMe-APBT-treated cells, suggesting the involvement of a death receptor-mediated pathway in 7-OMe-APBT-induced cell death. Increased TNF-α expression, TNFR2 expression, and p38 MAPK phosphorylation were noted in 7-OMe-APBT-treated cells. Pretreatment with a p38 MAPK inhibitor abolished 7-OMe-APBT-induced TNF-α and TNFR2 up-regulation. 7-OMe-APBT stimulated p38 MAPK/c-Jun-mediated transcriptional up-regulation of TNFR2, while the increased TNF-α mRNA stability led to TNF-α up-regulation in 7-OMe-APBT-treated cells. Treatment with 7-OMe-APBT up-regulated protein phosphatase 2A catalytic subunit α (PP2Acα) expression via the p38 MAPK/c-Jun/ATF-2 pathway, which, in turn, promoted tristetraprolin (TTP) degradation. Pretreatment with a protein phosphatase 2A inhibitor or TTP over-expression abrogated TNF-α up-regulation in 7-OMe-APBT-treated cells. Abolishment of TNF-α up-regulation or knock-down of TNFR1/TNFR2 by siRNA restored the viability of 7-OMe-APBT-treated cells. Taken together, our data indicate a connection between p38 MAPK-mediated TNF-α and TNFR2 up-regulation and 7-OMe-APBT-induced TNF-α-mediated death pathway activation in U937 cells. The same pathway also elucidates the mechanism underlying 7-OMe-APBT-induced death of human leukemia HL-60 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.