Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.
Abstract. The Montana State University Composite Material Technologies ResearchGroup performed a study to ascertain the effects of defects that often result from the manufacture of composite wind turbine blades. The first step in this multiyear study was to systematically quantify and enter these defects into a database before embedding similar defects into manufactured coupons. Through the Sandia National Laboratories Blade Reliability Collaborative (BRC), it was determined that key defects to investigate were fiber waves and porosity. An inspection of failed commercial-scale wind turbine blades yielded metrics that utilized specific parameters to physically characterize a defect. Methods to easily and consistently discretize, measure, and assess these defects based on the identified parameters were established to allow for statistical analysis. Data relating flaw parameters to frequencies of occurrence were analyzed and found to fit within standard distributions. Additionally, mechanical testing of coupons with flaws based on these physical characterization data was performed to understand effects of these defects. Representative blade materials and manufacturing methods were utilized and both material properties and damage progression were measured. It was observed that flaw parameters directly affected the mechanical response. While the data gathered in this first step are widely useful, it was also intended for use as a foundation for the rest of the study, to perform probabilistic analysis and comparative analysis of progressive damage models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.