This paper puts forth two new closure models for the proper orthogonal decomposition reduced-order modeling of structurally dominated turbulent flows: the dynamic subgrid-scale model and the variational multiscale model. These models, which are considered state-of-the-art in large eddy simulation, together with the mixing length and the Smagorinsky closure models, are tested in the numerical simulation of a 3D turbulent flow around a circular cylinder at Re = 1, 000. Two criteria are used in judging the performance of the proper orthogonal decomposition reduced-order models: the kinetic energy spectrum and the time evolution of the POD coefficients. All the numerical results are benchmarked against a direct numerical simulation. Based on these numerical results, we conclude that the dynamic subgrid-scale and the variational multiscale models perform best.
We propose a data-driven filtered reduced order model (DDF-ROM) framework for the numerical simulation of fluid flows. The novel DDF-ROM framework consists of two steps: (i) In the first step, we use explicit ROM spatial filtering of the nonlinear PDE to construct a filtered ROM. This filtered ROM is low-dimensional, but is not closed (because of the nonlinearity in the given PDE). (ii) In the second step, we use data-driven modeling to close the filtered ROM, i.e., to model the interaction between the resolved and unresolved modes. To this end, we use a quadratic ansatz to model this interaction and close the filtered ROM. To find the new coefficients in the closed filtered ROM, we solve an optimization problem that minimizes the difference between the full order model data and our ansatz. We emphasize that the new DDF-ROM is built on general ideas of spatial filtering and optimization and is independent of (restrictive) phenomenological arguments.We investigate the DDF-ROM in the numerical simulation of a 2D channel flow past a circular cylinder at Reynolds number Re = 100. The DDF-ROM is significantly more accurate than the standard projection ROM. Furthermore, the computational costs of the DDF-ROM and the standard projection ROM are similar, both costs being orders of magnitude lower than the computational cost of the full order model. We also compare the new DDF-ROM with modern ROM closure models in the numerical simulation of the 1D Burgers equation. The DDF-ROM is more accurate and significantly more efficient than these ROM closure models.where a is the vector of unknown ROM coefficients and A ∈ R r×r , B ∈ R r×r×r are ROM operators. (vi) In an offline stage, compute the ROM operators. (vii) In an online stage, repeatedly use the Proj-ROM (1.1) (for various parameter settings
In this paper, we propose, analyze and test a post-processing implementation of a projection-based variational multiscale (VMS) method with proper orthogonal decomposition (POD) for the incompressible Navier-Stokes equations. The projection-based VMS stabilization is added as a separate post-processing step to the standard POD approximation, and since the stabilization step is completely decoupled, the method can easily be incorporated into existing codes, and stabilization parameters can be tuned independent from the time evolution step. We present a theoretical analysis of the method, and give results for several numerical tests on benchmark problems which both illustrate the theory and show the proposed method's effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.