A major future challenge in agriculture is to reduce the use of new reactive nitrogen (N) while maintaining or increasing productivity without causing a negative N balance in cropping systems. We investigated if strategic management of internal biomass N resources (green manure ley, crop residues and cover crops) within an organic crop rotation of six main crops, could maintain the N balance. Two years of measurements in the field experiment in southern Sweden were used to compare three biomass management strategies: anaerobic digestion of ensiled biomass and application of the digestate to the nonlegume crops (AD), biomass redistribution as silage to non-legume crops (BR), and leaving the biomass in situ (IS). Neither aboveground crop N content from soil, nor the proportion of N derived from N 2 fixation in legumes were influenced by biomass management treatment. On the other hand, the allocation of N-rich silage and digestate to non-legume crops resulted in higher N 2 fixation in AD and BR (57 and 58 kg ha), compared to IS (33 kg ha -1 year -1 ) in the second study year. The N balance ranged between -9.9 and 24 kg N ha -1 , with more positive budgets in AD and BR than in IS. The storage of biomass for reallocation in spring led to an increasing accumulation of N in the BR and AD systems from one year to another. These strategies also provide an opportunity to supply the crop with the N when most needed, thereby potentially decreasing the risk of N losses during winter.
Recirculation of nitrogen (N) from crop residue and green-manure biomass resources may reduce the need to add new reactive N to maintain crop yield and quality. The aim of this study was to determine how different strategies for recycling residual and green-manure biomass influence yield and N concentration of the edible parts of food crops in a stockless organic cropping system. For this purpose, three biomass distribution treatments were investigated in a field experiment, based on a cropping system designed to produce both high-quality food crops and biomass resources from crop residues, cover crops and a green-manure ley. The three treatments, applied at the cropping system level, were: (1) incorporating the aboveground biomass resources in situ (IS); (2) harvesting, ensiling and redistributing the same biomass resources to the non-legume crops (biomass redistribution, BR); and (3) harvesting, ensiling and using the biomass resources as substrate for production of bio-methane via anaerobic digestion (AD) followed by distribution of the digestate as bio-fertilizer to the non-legume crops. The redistribution of ensiled (BR) and digested (AD) biomass did not increase the yield of the edible parts in winter rye (Secale cereal L.), white cabbage (Brassica oleracea L.) or red beet (Beta vulgaris L.) compared with leaving the biomass on the ground at harvest (IS). The BR treatment increased the yield of lentil intercropped with oat, compared with IS treatment in one of the two studied years. The total biomass yield of the cover crop following winter rye was significantly higher in the BR treatment than in IS in both years. The legume proportion in the green-manure ley was significantly higher in the AD and BR treatments as compared with IS in one of the experimental years. This study showed that strategic biomass redistribution has the potential to enhance biomass productivity while maintaining food crop yields, thereby enhancing whole system productivity. Biomass redistribution systems both with and without biogas digestion offer a new strategy for the development of multifunctional arable cropping systems that rely on internal nutrient cycling.
The main aim of this paper is to demonstrate that clusters can support the sustainable development of rural areas through the creation of shared value. This is done via the close exam-ination of six different cases of rural clusters in Greece, Italy, Germany, Poland, Denmark, and Sweden. Qualitative as well as quantitative data weretaken from the clusters, which demonstrated that their main business approaches naturally coincided with the creation of economic, social, and environmental benefits for the local communities in which they operated. The case clusters were created in a top-down manner, aimed at boosting regional R&D activities and making the local economy more competitive and more sustainable. However, private initiative took over and al-lowed these clusters to flourish because meeting the regions’ economic, social, and environmental needs successfully coincided with the target of the clusters’ own development and profitability. The results show that clusters, with their potential for shared value creation, can constitute a powerful engine for the revitalisation and development of rural areas, addressing the significant challenges which they are currently facing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.