Small conductive polymer force sensors were attached to the distal phalangeal pads for measuring individual finger forces exerted during submaximal static pinch. A linear force summing strain gauge dynamometer for measuring resultant five-finger pinch force was grasped vertically using a neutral wrist posture. Individual finger forces were measured at fixed total pinch force levels of 10%, 20%, and 30% of maximum voluntary exertion using pinch spans of 45 mm and 65 mm. Total pinch force and individual finger forces were also measured while similarly grasping the dynamometer and supporting fixed weights for 1.0 kg, 1.5 kg, and 2.0 kg loads using pinch spans of 45 mm and 65 mm. The index and middle fingers exerted more than 3 N greater average force than the ring and small fingers for the fixed total pinch force task. No significant individual finger force differences were observed at the 10% maximum voluntary exertion level, however both the index and middle fingers exerted more than 5 N greater force than the ring and small fingers at the 30% maximum voluntary exertion level. The average contribution of the index, middle, ring, and small fingers were 33%, 33%, 17%, and 15%, respectfully, for the fixed total pinch force task. As exertion level increased from 10% to 30%, the contribution of the middle finger was not constant increasing from 25% to 38%. Total pinch force increased from 15 N to 30 N when the load weight increased from 1.0 kg to 2.0 kg.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.