Supercritical carbon dioxide (scCO2) acts simultaneously as solvent and temporary protecting group during homogeneously rhodium-catalyzed hydroaminomethylation of ethyl methallylic amine. Cyclic amines are formed as the major products in scCO,, whereas the cyclic amide is formed preferentially in conventional solvents. Multinuclear high-pressure NMR spectroscopy revealed that this selectivity switch is mainly due to reversible formation of the carbamic acid in the solvent CO2, which reduces the tendency for intramolecular ring closure at the Rh-acyl intermediate. These results substantiate the general concept of using scCO2 as a protective medium for amines in homogeneous catalysis and demonstrate for the first time its application for selectivity control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.