Our objective is to assess the viability of GaAs-based intermediate band solar cells grown by molecular beam epitaxy using InAs/GaAs submonolayer quantum dots to create intermediate bands. This work is divided into two parts. In the first one, given that epitaxial III-V solar cells are a scarce technology in Brazil and that the photovoltaics research program is new in our research group, we developed conventional GaAs solar cells. We combined theoretical analyses using SCAPS and OpenFilters software with experimental analyses using current-voltage method, spectrophotometry (reflectance) and spectroscopic ellipsometry. This allowed us to produce a device with 17.2 % efficiency operating under 298 K and AM1.5G illumination. We discussed in detail the design of a TiO 2 /Al 2 O 3 antireflective coating that led our best device to achieve a short-circuit current density of 23,6 mA/cm 2 . In the second part, we discussed the workings of quantum dot solar cells. We observed that InAs/GaAs submonolayer quantum dots led to more efficient solar cells relative to those having Stranski-Krastanov quantum dots, as the latter cause a much higher open-circuit voltage degradation than the former. However, the submonolayer quantum dots did not lead to devices more efficient than conventional ones. Through Schrödinger-Poisson calculations in the effective-mass approximation with NextNano software, we concluded that this shortfall is probably due to the submonolayer quantum dots not being able to confine electrons in three dimensions as required by the intermediate band solar cell model. The calculations indicate that the nanostructures need to be larger and have a higher In concentration to allow such electron confinement. Lastly, using atom probe tomography, we identified growth conditions that lead to a higher In concentration in submonolayer quantum dots relative to the ones we applied to our devices. Such growth conditions might be explored in the future to achieve true intermediate band solar cells.
Este trabalho tem por objetivo a caracterização de filmes finos de óxido de alumínio produzidos por deposição assistida por feixe de íons Ar +. Tal caracterização consiste em estabelecer a relação entre os parâmetros de produção (energia do feixe e fluxo relativo de Ar), a composição e a estrutura dos filmes. Para tanto, utiliza-se técnicas de microscopia de força atômica, difração de raios-x, refletividade de raios-x e análise por feixe iônico. Resultados mostram que amostras produzidas à temperatura ambiente e à 450 o C são amorfas independentemente da energia do feixe iônico. Filmes formados com assistência de feixe possuem qualidade superior àqueles formados por deposição física de vapor. O bombardeamento de íons Ar + mostra-se capaz de controlar a concentração de hidrogênio, a estequiometria, a rugosidade, o tamanho dos grãos e a densidade dos filmes finos. Amostras com excelente qualidade-baixa rugosidade, estequiometria próxima da ideal e boa densidade-foram produzidas utilizando íons com energia dentre 300 eV e 600 eV. Palavras-chaves: IBAD. alumina. Al 2 O 3. óxido de alumínio. filmes finos. caracterização de filmes finos. análise por feixe iônico. IAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.