In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.
Transect counts of butterflies were conducted in the northern part of Ibaraki, central Japan, from 1997 to 2001 at 11 census sites, composed of successive stages of deciduous forest development: grassland (one site, early abandoned stage); cutover land (one site, 1–5 years after clear‐cutting); secondary forests (very young (two sites, 6–9 years), middle (two sites, 16–22 years) and old (two sites, 47–51 years)) and old‐growth natural forests (three sites, ≥124 years old). A total of 86 species and 8858 individual butterflies were recorded by 29 sets (406 times) of transect counts. The species richness (number of species), abundance (number of individuals) and diversity indices (Shannon–Wiener H′ and Simpson's 1–λ) of butterflies were high in the early stages (grassland, cutover land and very young secondary forests) of secondary succession. Typical natural forest species increased with the progress of succession, and the old secondary forests and old‐growth natural forests had similar species composition. In contrast, most of the typical natural grassland species were recorded only in the grassland site. In the cutover land site, the number of individuals of grassland species considerably decreased from the first to the second year; furthermore, only one typical natural grassland species was recorded. Thus, the suitable stage for grassland butterfly species lasts for only 1–2 years after clear‐cutting. Old secondary forests (approximately>50 years old) would be able to give refuge to the forest butterfly species, including typical natural forest species. Based on the results, a practical, forestry‐based plan to conserve butterfly diversity was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.