In this paper, we present a method for comparing and evaluating different collections of machine learning algorithms on the basis of a given performance measure (e.g., accuracy, area under the curve (AUC), F-score). Such a method can be used to compare standard machine learning platforms such as SAS, IBM SPSS, and Microsoft Azure ML. A recent trend in automation of machine learning is to exercise a collection of machine learning algorithms on a particular problem and then use the best performing algorithm. Thus, the proposed method can also be used to compare and evaluate different collections of algorithms for automation on a certain problem type and find the best collection. In the study reported here, we applied the method to compare six machine learning platforms – R, Python, SAS, IBM SPSS Modeler, Microsoft Azure ML, and Apache Spark ML. We compared the platforms on the basis of predictive performance on classification problems because a significant majority of the problems in machine learning are of that type. The general question that we addressed is the following: Are there platforms that are superior to others on some particular performance measure? For each platform, we used a collection of six classification algorithms from the following six families of algorithms – support vector machines, multilayer perceptrons, random forest (or variant), decision trees/gradient boosted trees, Naive Bayes/Bayesian networks, and logistic regression. We compared their performance on the basis of classification accuracy, F-score, and AUC. We used F-score and AUC measures to compare platforms on two-class problems only. For testing the platforms, we used a mix of data sets from (1) the University of California, Irvine (UCI) library, (2) the Kaggle competition library, and (3) high-dimensional gene expression problems. We performed some hyperparameter tuning on algorithms wherever possible. The online supplement is available at https://doi.org/10.1287/ijoc.2018.0825 .
In this paper, we present an adaptive approach in order to match and retrieve near duplicate images at different scales. Matching only local Features does not necessarily identify visually similar images. Global features are fast at matching but less accurate. Many existing methods either use local features or CNN features for image or video retrieval task. In this paper, we combined the use of SURF local points and CNN features extracted around SURF points in order to match near duplicate image pairs. Image pairs are segmented into blocks and CNN features of the image block containing matched SURF features are extracted and matched. Regions around matched image blocks are grown adaptively and matching is carried out until CNN mismatch is observed. To verify our proposed approach, experiments are carried out on benchmarking California-ND and Holiday dataset. Compared to traditional approaches for image retrieval, our approach not only retrieves relevant images but also provides detail of localized matched patch. For California-ND dataset and Holiday dataset, we achieve remarkable mAP (mean average precision) score up to 0.86 and 0.74 respectively.
Video surveillance is currently one of the most active research topics in the computer vision community. During motion, the surveillance system can detect moving objects and identify them as humans, animals, vehicles. This strong interest is driven by a wide spectrum of promising applications in surveillance system such as Military security, Public and commercial security, etc. The model includes detection, feature extraction and recognition of people from image sequences involving humans. In proposed system frame differencing and Neural Network is used for moving object detection and recognition of human motion respectively. Experimental results show that human motion can be correctly classified. General TermsMotion detection and recognition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.