Coronavirus Disease 2019 (COVID-19) is a deadly infection that affects the respiratory organs in humans as well as animals. By 2020, this disease turned out to be a pandemic affecting millions of individuals across the globe. Conducting rapid tests for a large number of suspects preventing the spread of the virus has become a challenge. In the recent past, several deep learning based approaches have been developed for automating the process of detecting COVID-19 infection from Lung Computerized Tomography (CT) scan images. However, most of them rely on a single model prediction for the final decision which may or may not be accurate. In this paper, we propose a novel ensemble approach that aggregates the strength of multiple deep neural network architectures before arriving at the final decision. We use various pre-trained models such as VGG16, VGG19, InceptionV3, ResNet50, ResNet50V2, InceptionResNetV2, Xception, and MobileNet and fine-tune them using Lung CT Scan images. All these trained models are further used to create a strong ensemble classifier that makes the final prediction. Our experiments exhibit that the proposed ensemble approach is superior to existing ensemble approaches and set state-of-the-art results for detecting COVID-19 infection from lung CT scan images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.