The recent Coronavirus disease (COVID-19), which started in 2019, has spread across the globe and become a global pandemic. The efficient and effective COVID-19 detection using chest X-rays helps in early detection and curtailing the spread of the disease. In this paper, we propose a novel Trained Output-based Transfer Learning (TOTL) approach for COVID-19 detection from chest X-rays. We start by preprocessing the Chest X-rays of the patients with techniques like denoising, contrasting, segmentation. These processed images are then fed to several pre-trained transfer learning models like InceptionV3, InceptionResNetV2, Xception, MobileNet, ResNet50, ResNet50V2, VGG16, and VGG19. We fine-tune these models on the processed chest X-rays. Then we further train the outputs of these models using a deep neural network architecture to achieve enhanced performance and aggregate the capabilities of each of them. The proposed model has been tested on four recent COVID-19 chest X-rays datasets by computing several popular evaluation metrics. The performance of our model has also been compared with various deep transfer learning models and several contemporary COVID-19 detection methods. The obtained results demonstrate the efficiency and efficacy of our proposed model.