Laplace transform has been used for solving differential equations of fractional order either PDEs or ODEs. However, using the Laplace transform sometimes leads to solutions in Laplace space that are not readily invertible to the real domain by analytical techniques. Therefore, numerical inversion techniques are then used to convert the obtained solution from Laplace domain into time domain. Various famous methods for numerical inversion of Laplace transform are based on quadrature approximation of Bromwich integral. The key features are the contour deformation and the choice of the quadrature rule. In this work, the Gauss–Hermite quadrature method and the contour integration method based on the trapezoidal and midpoint rule are tested and evaluated according to the criteria of applicability to actual inversion problems, applicability to different types of fractional differential equations, numerical accuracy, computational efficiency, and ease of programming and implementation. The performance and efficiency of the methods are demonstrated with the help of figures and tables. It is observed that the proposed methods converge rapidly with optimal accuracy without any time instability.
This article presents an efficient method for the numerical modeling of time fractional mixed diffusion and wave-diffusion equations with two Caputo derivatives of order 0<α<1, and 1<β<2. The numerical method is based on the Laplace transform technique combined with local radial basis functions. The method consists of three main steps: (i) first, the Laplace transform is used to transform the given time fractional model into an equivalent time-independent inhomogeneous problem in the frequency domain; (ii) in the second step, the local radial basis functions method is utilized to obtain an approximate solution for the reduced problem; (iii) finally, the Stehfest method is employed to convert the obtained solution from the frequency domain back to the time domain. The use of the Laplace transform eliminates the need for classical time-stepping techniques, which often require very small time steps to achieve accuracy. Additionally, the application of local radial basis functions helps overcome issues related to ill-conditioning and sensitivity to shape parameters typically encountered in global radial basis function methods. To validate the efficiency and accuracy of the proposed method, several test problems in regular and irregular domains with uniform and non-uniform nodes are considered.
<abstract><p>The generalized (3+1)-dimensional Breaking soliton system (gBSS) has numerous applications across various scientific fields. This manuscript presents a study on important exact solutions of the gBSS, with a focus on novel solutions. Using the Hirota bilinear technique, we derive the general solution of the proposed system and obtain the novel solutions by considering different types of auxiliary functions. Our analysis includes the study of multi-solitons, multiple bifurcation solitons, lump wave solutions, M-shaped solitons, and their interactions. We also observe several hybrid solitons, including tuning fork-shaped, X-Y shaped, and double Y shaped. Our results are presented through graphical representations.</p></abstract>
In this paper, we study the uniqueness and existence of the solutions of four types of non-singular delay difference equations by using the Banach contraction principles, fixed point theory, and Gronwall’s inequality. Furthermore, we discussed the Hyers–Ulam stability of all the given systems over bounded and unbounded discrete intervals. The exponential stability and controllability of some of the given systems are also characterized in terms of spectrum of a matrix concerning the system. The spectrum of a matrix can be easily obtained and can help us to characterize different types of stabilities of the given systems. At the end, few examples are provided to illustrate the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.