This research shows that a HIFU-induced CL provides a very good landmark for target motion tracking. By using the CL tracking method, target motion compensation can be realized in the US-guided robotic HIFU system.
We propose a non-invasive ultrasound theragnostic system that tracks movement in an affected area (kidney stones, in the present study) by irradiating the area with highintensity focused ultrasound (HIFU). In the present paper, the concept behind a novel medical support system that integrates therapy and diagnostics (theragnostics) is illustrated. The required functions for the proposed system are discussed and an overview of the constructed system configuration is illustrated. The problems associated with kidney stone motion tracking by ultrasonography are described. In order to overcome these problems, we consider two approaches. The first approach is to minimize the servoing error so as to enhance both the efficiency of the therapy and the safety of the patient. The second approach is to reduce the effect of the servoing error. With respect to the first approach, we propose a robust detection method of the stone position based on shape information. With respect to the second approach, we propose a solution for controlling the HIFU irradiation power in accordance with the servoing error, primarily in order to enhance the safety of the patient.
This paper presents a real-time pose estimation method as a part of robotic HIFU treatment system for moving volumetric targets. For the acquired biplane US images, current pose of the preoperative model is calculated by iterative segmentation and registration. Seed contours for the segmentation in each iteration is provided by previously registered preoperative 3-D model. The segmented boundary points then update the pose of 3-D model. The boundary outlier-removal makes the algorithm robust against partially noisy boundaries as well as the spatial boundary points accelerates the algorithm to be calculated in real-time. By the phantom experiments, registration accuracy for a biplane US image data was evaluated, and the processing time was also investigated.
Unwanted motion is a serious problem in enhancing servoing performance in an affected area, which incorporates stones/tumours in non-invasive ultrasound theragnostic systems (NIUTS). To solve this problem, we proposed a new method for restricting the motion of the affected area ventrodorsally in the region of interest (ROI) in ultrasound imaging. To do so, we introduce a bed mechanism for NIUTS. It is confirmed that a human kidney could be tracked and followed appropriately using the proposedmethod and the newly constructed bed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.