A riqueza e a abundância de adultos e girinos de anuros foram estudadas ao longo de 15 meses em dez corpos de água no noroeste do estado de São Paulo, região intensamente antropizada pela conversão de hábitats naturais em terras agrícolas. Foram registradas 27 espécies de anfíbios anuros, das quais quatro espécies constituem novos registros para a região. A maioria das espécies é característica de ambientes de formação vegetal aberta, sendo as maiores riqueza e diversidade de espécies encontradas em corpos de água lênticos em área aberta. Entretanto, em conseqüência do pequeno número de corpos de água encontrados nos fragmentos de mata da região, não é possível comparar a ocorrência de anuros em áreas abertas e fechadas. Foram determinados seis descritores da heterogeneidade dos corpos d'água, e nenhum deles foi relacionado com a riqueza de espécies. Por outro lado, tanto a riqueza quanto a abundância das espécies foram fortemente correlacionadas com as variáveis climáticas. A composição de espécies (diversidade b) variou pouco entre os corpos d'água, como provável conseqüência da grande amplitude de nicho, comum em espécies que ocupam ambientes instáveis ou alterados pelo homem, como os presentemente estudados. A riqueza de espécies da área amostrada é relativamente alta, quando comparada a outras localidades onde o grau de conservação ambiental é superior, como na Estação Ecológica de Águas Emendadas (Distrito Federal) e Floresta Nacional de Silvânia (Goiás).
Anurans are a highly diverse group in the Atlantic Forest hotspot (AF), yet distribution patterns and species richness gradients are not randomly distributed throughout the biome. Thus, we explore how anuran species are distributed in this complex and biodiverse hotspot, and hypothesize that this group can be distinguished by different cohesive regions. We used range maps of 497 species to obtain a presence/absence data grid, resolved to 50×50 km grain size, which was submitted to k-means clustering with v-fold cross-validation to determine the biogeographic regions. We also explored the extent to which current environmental variables, topography, and floristic structure of the AF are expected to identify the cluster patterns recognized by the k-means clustering. The biogeographic patterns found for amphibians are broadly congruent with ecoregions identified in the AF, but their edges, and sometimes the whole extent of some clusters, present much less resolved pattern compared to previous classification. We also identified that climate, topography, and vegetation structure of the AF explained a high percentage of variance of the cluster patterns identified, but the magnitude of the regression coefficients shifted regarding their importance in explaining the variance for each cluster. Specifically, we propose that the anuran fauna of the AF can be split into four biogeographic regions: a) less diverse and widely-ranged species that predominantly occur in the inland semideciduous forests; b) northern small-ranged species that presumably evolved within the Pleistocene forest refugia; c) highly diverse and small-ranged species from the southeastern Brazilian mountain chain and its adjacent semideciduous forest; and d) southern species from the Araucaria forest. Finally, the high congruence among the cluster patterns and previous eco-regions identified for the AF suggests that preserving the underlying habitat structure helps to preserve the historical and ecological signals that underlie the geographic distribution of AF anurans.
Abstract:Because anuran species are highly dependent on environmental variables, we hypothesized that anuran species richness and the number of reproductive modes from different Brazilian localities vary according to climatic and altitudinal variables. Published data were compiled from 36 Brazilian localities and climatic and altitudinal data were extracted from an available database. A partial redundancy analysis (pRDA) showed that 23.5% of the data set's variation was explained by climatic and altitudinal data, while the remaining 76.5% remained unexplained. This analysis suggests that other factors not analysed herein may also be important for predicting anuran species richness and the number of reproductive modes in Brazil. Altitude and total annual rainfall were positively correlated with anuran species richness and the number of reproductive modes, and total annual rainfall was strongly associated with these two biotic variables in the triplot of pRDA. The positive association of total annual rainfall and the negative association of the concentration of annual rainfall were already expected based on physiological and reproductive requirements of anurans. On the other hand, temperature was not associated with richness or the number of reproductive modes.
We hypothesized that the environmental heterogeneity of breeding ponds influences the species composition and species richness of anuran assemblages from southeastern Brazil, because it provides humidity, shelter, and breeding microhabitats for anuran species, which can result in an increasing number of species in a given habitat. To begin, we tested whether the occurrence of anuran species in each breeding pond is different from a null model of random placement of species in those ponds. We then performed two tests to evaluate which of the five environmental descriptors of breeding ponds influence (1) the species composition and (2) species richness. Species composition of the 38 breeding ponds was correlated with number of edge types, number of plant types along the edges of the breeding ponds, and the hydroperiod. Neither the percentage of vegetation cover on the water’s surface nor the size of the breeding ponds were correlated with species composition. Only the number of edge types was correlated with species richness of breeding ponds. The correlation of three environmental descriptors with species composition and one environmental descriptor with species richness, as well as the high beta diversity among breeding ponds, suggest that the analyses of environmental heterogeneity on species composition was more informative than was the analysis for species richness, because breeding ponds with similar species richness can have distinct species composition among them (high beta diversity).
Although species distribution modelling (SDM) is widely accepted among the scientific community and is increasingly used in ecology, conservation biology and biogeography, methodological limitations generate potential problems for its application in macroecology. Using amphibian species richness in North and South America, we compare species richness patterns derived from SDM maps and ‘expert’ maps to evaluate if: 1) richness patterns derived from SDM are biased toward climate‐based explanations for diversity when compared to expert maps, since SDM methods are typically based on climatic variables; and 2) SDM is a reliable tool for generating richness maps in hyperrich regions where point occurrence data are limited for many species. We found that although three widely used SDM methods overestimated amphibian species richness in grid cells when compared to expert richness maps in both North and South America due to systematic overestimation of range sizes, diversity gradients were reasonably robust at broad scales. Further, climatic variables statistically explained patterns of richness at similar levels among the different richness sources, although climatic relationships were stronger in the much better known North America than in South America. We conclude that in the face of the high deforestation rates coupled with incomplete data on species distributions, especially in the tropics, SDM represents a useful macroecological tool for investigating broad‐scale richness patterns and the dynamics between species richness and climate.
The effect of ground cover upon the communities of beneficial arthropods established in the canopy of lemon trees was investigated, by comparing three ground-cover management treatments applied: RV, resident vegetation; S, sowed selected species; and BS, bare soil by controlling weeds with herbicide. Over two consecutive years, arthropod communities in the tree canopy were sampled periodically by beating and suction techniques. Significantly higher numbers of beneficial arthropods were found in the RV and S treatments in comparison with bare soil. Spiders and parasitoid wasps were the two most common groups, representing, respectively, 70% and 19% of all catches in beating samples and 33% and 53% in suction samples. For the RV and S treatments, significant seasonal deviations from the bare soil treatment were observed using principal response curves. Similar seasonal patterns were observed over the two years. The RV and S treatments showed significant positive deviations from the BS treatment in late spring and summer, accounted for the higher numbers of parasitoid wasps, coccinelids and lacewings present. By contrast, the seasonal deviations observed for the spider community differed from those of the remaining arthropods. During late winter and early spring, the RV and S treatments presented a higher abundance of spiders in the tree canopy, in comparison with bare soil, whereas in the summer significantly more spiders were found in the bare soil treatment. Spider movements between tree canopy and ground vegetation layers may justify this result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers