Harvey (Ha-MSV) and Kirsten (Ki-MSV) murine sarcoma viruses induce tumours in animals and transform various cells in culture because of the expression of the ras oncogene product, p21 (ref. 1). Proto-oncogenes homologous with these genes are highly conserved evolutionarily and activated ras oncogenes have been detected in many human cancers. Whether c-ras oncogenes are directly responsible for human carcinogenesis is uncertain; however, it is clear that p21 mediates virus-induced transformation, although by an unknown mechanism. Epithelial and fibroblast cell lines transformed with Ha-MSV and Ki-MSV express p21 (ref. 8) and exhibit reduced adenylate cyclase activity. Like the guanine nucleotide regulatory proteins, Ns and Ni, which mediate stimulation and inhibition, respectively, of adenylate cyclase, p21 is a membrane-associated GTP binding protein, which exhibits GTPase activity. These similarities suggest that p21 and the adenylate cyclase regulatory proteins are related in cellular function, and that p21 depresses adenylate cyclase by inhibiting the activity of Ns or acting as Ni. We have therefore now examined the structural and functional similarities between p21 and Ns and Ni and find no evidence that p21 regulates adenylate cyclase activity by acting as one of these regulatory proteins.
HIV-1-RNA levels vary with the menstrual cycle in the female genital tract but not the blood compartment. HIV-1-RNA levels are higher in endocervical canal fluid than in blood plasma. These findings may have important implications for sex-specific pathogenesis, heterosexual transmission, and contraceptive hormone interventions in HIV-1-infected women.
To understand the impact of the menstrual cycle on immunologic parameters, we measured the level of cytokines and chemokines from plasma, cervicovaginal lavage (CVL), and saliva samples of 6 premenopausal women during the follicular and luteal phases of the ovulatory cycle. We demonstrate that the level of plasma interleukin-8 (IL-8) was 4-fold higher during the follicular phase than the luteal phase (p = 0.004), whereas plasma IL-1beta, IL-4, IL-6, IL-10, interferon-gamma (IFN-gamma), transforming growth factor-beta (TGF-beta), tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), and TNF receptor II (TNFR II) were not altered during the ovulatory cycle. In the vaginal compartment, as measured from CVL samples, the levels of IL-6 and IL-1beta were both 5-fold higher in the follicular than the luteal phase (p = 0.0002 and 0.03, respectively). Salivary cytokine and chemokine samples were similar when measured during the luteal and the follicular phases. Additional analysis of lymphocyte subsets for phenotypic and functional markers indicated that they were not influenced by the ovulatory cycle. Collectively, these data suggest that IL-6, IL-8, and IL-1beta are differentially regulated during the ovulatory cycle.
We provide evidence of elevated vaginal cytokine levels during menses, which appear to regulate vaginal and not plasma HIV shedding, suggesting that a menstrual cycle pattern exists for cytokine production in HIV-positive women impacting vaginal shedding of HIV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.