We introduce a rational design approach to high-performance multi-valued logic circuits. Taking an organic-based ternary inverter as a model system, robust input parameters to a two-dimensional finite-element solver are estimated....
We present a comprehensive numerical analysis of contact resistance in coplanar organic thin-film transistors. A large number of hole-transporting organic transistors are investigated through two-dimensional finite-element simulation, by deliberately changing the channel length, source/drain electrode thickness, and hole-injection energy barrier heights. Gate-field-dependent terminal contact resistances of these devices are fully estimated and electrostatic distributions inside the organic semiconductor film are visualized for the understanding of physical mechanisms. It is found that the relationship between source/drain electrode thickness and contact resistance does not follow any simple trend and is also strongly associated with the injection energy barrier. Moreover, the origin of negative contact resistance in organic transistors featuring a minimal charge-injection barrier is elaborated. Finally, a direct impact of the semiconductor charge-carrier mobility on contact resistance is addressed, revealing a linear dependence of contact resistance on inverse mobility over a broad parameter range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.