Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer.
Serum protein profiles of patients with bacterial sepsis from the day of diagnosis until recovery/mortality were compared from early to late stages in response to severe sepsis using two dimensional electrophoresis. The proteins exhibiting changes during the course of sepsis (20‑28 day mortality) were selected and identified by matrix‑assisted laser desorption ionization‑time of flight‑tandem mass spectrometry. Among the proteins identified, haptoglobin (Hp), transthyretin (TTR), orosomucoid 1/α1 acid glycoprotein (ORM1), α1 antitrypsin (A1AT), serum amyloid A (SAA) and S100A9 exhibited differential expression patterns between survivors (S; n=6) and non‑survivors (NS; n=6), particularly during the early stages of sepsis. Expression factors (EFs), taken as the ratio between the NS and S during early stages, showed ratios of Hp, 0.39 (P≤0.012); TTR, 3.96 (P≤0.03); ORM1, 0.69 (P≤0.79); A1AT, 0.92 (P≤0.87) and SAA, 0.69 (P≤0.01). S100A9, an acute phase protein, exhibited an EF ratio of 1.68 (P≤0.004) during the end stages of sepsis. A delayed rise in levels was observed in Hp, A1AT, ORM1, S100A9 and SAA, whereas TTR levels increased during the early stages of sepsis in NS. Analysis of inflammatory responses in the early stages of sepsis revealed increased mRNA expression in leukocytes of interleukin (IL)‑6 (EF, 2.50), IL‑10 (EF, 1.70) and prepronociceptin (EF, 1.6), which is a precursor for nociceptin in NS compared with S, and higher Toll‑like receptor‑4 (EF, 0.30) levels in S compared with NS. Therefore, a weaker acute phase response in the early stages of sepsis in NS, combined with an inefficient inflammatory response, may contribute to sepsis mortality.
Strains of Saccharomyces cerevisiae lacking factors involved in 5' to 3' mRNA decay pathway (DCP1, DCP2, DHH1, PAT1, LSM1 and LSM4) exhibit caspase-dependent apoptosis and accelerated chronological aging. In the present study, yeast strains lacking mRNA decapping activation factors (DCP2 and LSM1), cytoplasmic exosome function (SKI2) or cytoplasmic deadenylases (double deletion of CCR4 and PAN2) showed typical markers of eukaryotic apoptosis such as increased cellular reactive oxygen species levels, externalization of phosphatidyl serine, chromatin fragmentation, enhanced caspase gene (YCA1) expression and protein activity in mid-log phase cultures. The transcript levels of negative regulators of mRNA decapping (eIF4E and Pab1) were considerably elevated in strains defective in cytoplasmic deadenylation and reduced in strains lacking cytoplasmic 3' to 5' exosome function or decapping activators. Among the yeast strains studied, lsm1Δ and ccr4Δpan2Δ mutants displayed strongest apoptotic phenotype followed by mutants lacking DCP2 or SKI2. Among yeast strains exhibiting deadenylation defects, slight apoptotic phenotype was observed in ccr4Δ mutants and cell death markers imperceptible in pan2Δ mutants.
Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). β-N-Oxalyl-L-α,β-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at 200 μM L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.