The ability of a material model to capture in-plane matrix mode I and mode II crack growth is an essential component for modeling ply level damage evolution in composite structures. Previous studies using a continuum damage mechanics (CDM) approach have shown success in satisfying benchmark solutions for mode I and II crack growth. However, success was shown using a fiber-aligned meshing strategy, which encourages matrix cracks to propagate in a single band of elements, along the fiber direction. Generating a fiber-aligned mesh becomes a highly involved process for laminates including off-axis (non 0° or 90°) plies. The objective of this study is to quantify the effect of non-fiber aligned mesh discretization on predictions of inplane matrix crack propagation. The approach taken incrementally varies the mesh orientation angle relative to the fiber orientation; more specifically, misaligned meshes are used to quantify the effect of element angle orientation relative to the initial crack orientation on the energy released during matrix crack propagation simulations using a CDM method. CDM solutions obtained with the misaligned meshes are evaluated against known benchmarks for mode I and II matrix crack growth. The CDM solutions reveal a near-polynomial trend of increased predicted failure stress with increased mesh misalignment angle; hence implying a potential relationship between element orientation angle and apparent fracture toughness.
A systematic yet simple way to measure the fracture toughness value for a Mode I crack that occurs perpendicular to the fiber direction in a unidirectional composite is presented. Cross-ply single edge notch tension (SENT) tests combined with finite element analysis areutilized to obtain the in-plane fracture toughness value under tension in the direction of fibers. The notch length of the SENT specimen is used as a parameter to back out the fracture toughness value in a consistent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.