This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upperbound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.
The ability of a material model to capture in-plane matrix mode I and mode II crack growth is an essential component for modeling ply level damage evolution in composite structures. Previous studies using a continuum damage mechanics (CDM) approach have shown success in satisfying benchmark solutions for mode I and II crack growth. However, success was shown using a fiber-aligned meshing strategy, which encourages matrix cracks to propagate in a single band of elements, along the fiber direction. Generating a fiber-aligned mesh becomes a highly involved process for laminates including off-axis (non 0° or 90°) plies. The objective of this study is to quantify the effect of non-fiber aligned mesh discretization on predictions of inplane matrix crack propagation. The approach taken incrementally varies the mesh orientation angle relative to the fiber orientation; more specifically, misaligned meshes are used to quantify the effect of element angle orientation relative to the initial crack orientation on the energy released during matrix crack propagation simulations using a CDM method. CDM solutions obtained with the misaligned meshes are evaluated against known benchmarks for mode I and II matrix crack growth. The CDM solutions reveal a near-polynomial trend of increased predicted failure stress with increased mesh misalignment angle; hence implying a potential relationship between element orientation angle and apparent fracture toughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.