This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.
Measurements of the effect of microbubbles on a zero pressure gradient turbulent boundary layer generated on the test section wall of a water tunnel are described. Microbubbles are created by injecting air through a 0.5 μm sintered stainless steel plate immediately upstream of a floating element drag balance. At the downstream edge of the balance the length Reynolds number is as high as ten million. Integrated skin friction reduction of greater than 80% is observed. The drag balance results are confirmed by measurements with a surface hot-film probe. For the case in which buoyancy tends to keep the bubbles in the boundary layer, the skin friction data are shown to collapse when plotted against the ratio of air to water volume flow rate. The effects of buoyancy on skin friction reduction are also documented.
Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.
The fluid mechanics of artificial blood pumps has been studied since the early 1970s in an attempt to understand and mitigate hemolysis and thrombus formation by the device. Pulsatile pumps are characterized by inlet jets that set up a rotational "washing" pattern during filling. Strong regurgitant jets through the closed artificial heart valves have Reynolds stresses on the order of 10,000 dynes/cm 2 and are the most likely cause of red blood cell damage and platelet activation. Although the flow in the pump chamber appears benign, low wall shear stresses throughout the pump cycle can lead to thrombus formation at the wall of the smaller pumps (10-50 cc). The local fluid mechanics is critical. There is a need to rapidly measure or calculate the wall shear stress throughout the device so that the results may be easily incorporated into the design process. 65 Annu. Rev. Fluid Mech. 2006.38:65-86. Downloaded from www.annualreviews.org Access provided by University of California -San Diego on 02/04/15. For personal use only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.