Abstract-The gait characteristics of persons with unilateral transtibial amputations are fairly well documented in the literature. However, much less is known about the gait of persons with bilateral transtibial amputations. This study used quantitative gait analysis to investigate the gait characteristics of 19 persons with bilateral transtibial amputations. To reduce variability between subjects, we fitted all subjects with Seattle Lightfoot II feet 2 weeks before their gait analyses. The data indicated that subjects walked with symmetrical temporospatial, kinematic, and kinetic parameters. Compared with nondisabled controls, the subjects with amputations walked with slower speeds and lower cadences, had shorter step lengths and wider step widths, and displayed hip hiking during swing phase. Additionally, compared with the nondisabled controls walking at comparable speeds, the subjects with amputations demonstrated reduced ankle dorsiflexion and knee flexion in stance phase, reduced peak ankle plantar flexor moment, reduced positive ankle power (i.e., energy return) in late stance, and increased positive and negative hip power. These results demonstrate the deficiencies in current prosthetic componentry and suggest that further research is needed to enhance prosthesis function and improve gait in persons with amputations.
A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
BackgroundCurrent upper limb prostheses do not replace the active degrees-of-freedom distal to the elbow inherent to intact physiology. Limited evidence suggests that transradial prosthesis users demonstrate shoulder and trunk movements to compensate for these missing volitional degrees-of-freedom. The purpose of this study was to enhance understanding of the effects of prosthesis use on motor performance by comparing the movement quality of upper body kinematics between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks that reflect activities of daily living.MethodsUpper body kinematics were collected on six able-bodied controls and seven myoelectric transradial prosthesis users during execution of goal-oriented tasks. Range-of-motion, absolute kinematic variability (standard deviation), and kinematic repeatability (adjusted coefficient-of-multiple-determination) were quantified for trunk motion in three planes, shoulder flexion/extension, shoulder ab/adduction, and elbow flexion/extension across five trials per task. Linear mixed models analysis assessed between-group differences and correlation analysis evaluated association between prosthesis experience and kinematic repeatability.ResultsAcross tasks, prosthesis users demonstrated increased trunk motion in all three planes and shoulder abduction compared to controls (p ≤ 0.004). Absolute kinematic variability was greater for prosthesis users for all degrees-of-freedom irrespective of task, but was significant only for degrees-of-freedom that demonstrated increased range-of-motion (p ≤ 0.003). For degrees-of-freedom that did not display increased absolute variability for prosthesis users, able-bodied kinematics were characterized by significantly greater repeatability (p ≤ 0.015). Prosthesis experience had a strong positive relationship with average kinematic repeatability (r = 0.790, p = 0.034).ConclusionsThe use of shoulder and trunk movements by prosthesis users as compensatory motions to execute goal-oriented tasks demonstrates the flexibility and adaptability of the motor system. Increased variability in movement suggests that prosthesis users do not converge on a defined motor strategy to the same degree as able-bodied individuals. Kinematic repeatability may increase with prosthesis experience, or encourage continued device use, and future work is warranted to explore these relationships. As compensatory dynamics may be necessary to improve functionality of transradial prostheses, users may benefit from dedicated training that encourages optimization of these dynamics to facilitate execution of daily living activity, and fosters adaptable but reliable motor strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-132) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.