Gold nanoparticles (GNPs) are often used as colloidal carriers in numerous applications owing to their low-cost and size-controlled preparation as well as their straightforward surface functionalization with thiol containing molecules forming self-assembling monolayers (SAM). The quantification of the ligand density of such modified GNPs is technically challenging, yet of utmost importance for quality control in many applications. In this contribution, a new method for the determination of the surface coverage of GNPs with thiol containing ligands is proposed. It makes use of the measurement of the gold-to-sulfur (Au/S) ratio by inductively coupled plasma mass spectrometry (ICP–MS) and its dependence on the nanoparticle diameter. The simultaneous ICP–MS measurement of gold and sulfur was carefully validated and found to be a robust method with a relative standard uncertainty of lower than 10%. A major advantage of this method is the independence from sample preparation; for example, sample loss during the washing steps is not affecting the results. To demonstrate the utility of the straightforward method, GNPs of different diameters were synthesized and derivatized on the surface with bifunctional (lipophilic) ω-mercapto-alkanoic acids and (hydrophilic) mercapto-poly(ethylene glycol) (PEG)n-carboxylic acids, respectively, by self-assembling monolayer (SAM) formation. Thereby, a size-independent but ligand-chain length-dependent ligand density was found. The surface coverage increases from 4.3 to 6.3 molecules nm–2 with a decrease of ligand chain length from 3.52 to 0.68 nm. Furthermore, no significant difference between the surface coverage of hydrophilic and lipophilic ligands with approximately the same ligand length was found, indicating that sterical hindrance is of more importance than, for example, intermolecular strand interactions of Van der Waals forces as claimed in other studies.
The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10(-4) mol L(-1) in 1 mol L(-1) HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min(-1), discharge current = 10 mA, solution flow rate = 10 μL min(-1), and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL(-1) for 10 μL injections, with absolute mass values from 0.2 to 4 ng.
Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector–inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. ‘point-by-point’, ‘integration’ and ‘linear regression slope’ method) for the computation of 235U/238U isotope ratios measured in single particles by LA-MC-ICPMS was investigated. The analyzed uranium oxide particles (i.e. 9073-01-B, CRM U010 and NUSIMEP-7 test samples), having sizes down to the sub-micrometre range, are certified with respect to their 235U/238U isotopic signature, which enabled evaluation of the applied strategies with respect to precision and accuracy. The different strategies were also compared with respect to their expanded uncertainties. Even though the ‘point-by-point’ method proved to be superior, the other methods are advantageous, as they take weighted signal intensities into account. For the first time, the use of a ‘finite mixture model’ is presented for the determination of an unknown number of different U isotopic compositions of single particles present on the same planchet. The model uses an algorithm that determines the number of isotopic signatures by attributing individual data points to computed clusters. The 235U/238U isotope ratios are then determined by means of the slopes of linear regressions estimated for each cluster. The model was successfully applied for the accurate determination of different 235U/238U isotope ratios of particles deposited on the NUSIMEP-7 test samples.Electronic supplementary materialThe online version of this article (doi:10.1007/s00216-012-6674-3) contains supplementary material, which is available to authorized users.
We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.