Arbuscular mycorrhizal (AM) association is the most common symbiotic association of plants with microbes. AM fungi occur in the majority of natural habitats and they provide a range of important biological services, in particular by improving plant nutrition, abiotic resistance, and soil structure and fertility. AM fungi also interact with most crop varieties and forest plants. The possible benefit of AM fungi in forestry can be achieved through a combination of inoculum methods. The mycorrhizal inoculum levels in the soil and their colonization in different forest plant roots which leads to reduce the fertilizers, pathogen effects and fungicides and to protect topsoil, soil erosion, and water-logging. Currently, several reports were suggested that AM symbiosis can improve the potential for different plant species. Two steps could be used to produce high yielding of different plant biomass that would be both mycorrhizal dependency and suitability for sowing into the field with high inoculum levels Therefore, the wide-scale inoculation of AM fungi on forest trees will become economically important. The successful research is required in the area of mass production of AM fungal inoculum and AM fungi associated with roots which will contribute to sustainable forestry.
Identification of proper microbial sources and optimizing the enzyme production conditions are essential for industrial-scale enzyme production. The present study was done to identify and enhance the production of protease enzyme from an important microbial source Rummeliibacillus stabekisii (TWSS-P-2). Ultra-violet radiation physical method and ethyl methanesulfonate and ethidium bromide dependent chemical methods were considered for mutagenesis. Enzyme assay-dependent screening resulted in identifying Rummeliibacillus stabekisii (TWSS-P-2) as the best strain with optimum protease production that was improved through the chemical treatment mentioned. The strains were tested under various physical and chemical factors including carbon source, nitrogen source, inoculum sizes, pH, temperature to optimize the production of the protein. Submerged fermentation (SmF) was used to assess enzyme production. We were successful in deriving the optimum condition for the protease enzyme production for Rummeliibacillus stabekisii (TWSS-P-2) and the mutagenic effect yielded 2-4 fold better enzyme production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.