Granzyme A (GzmA) is considered a major proapoptotic protease. We have discovered that GzmA-induced cell death involves rapid membrane damage that depends on the synergy between micromolar concentrations of GzmA and sublytic perforin (PFN). Ironically, GzmA and GzmB, independent of their catalytic activity, both mediated this swift necrosis. Even without PFN, lower concentrations of human GzmA stimulated monocytic cells to secrete proinflammatory cytokines (interleukin-1beta [IL-1beta], TNFalpha, and IL-6) that were blocked by a caspase-1 inhibitor. Moreover, murine GzmA and GzmA(+) cytotoxic T lymphocytes (CTLs) induce IL-1beta from primary mouse macrophages, and GzmA(-/-) mice resist lipopolysaccharide-induced toxicity. Thus, the granule secretory pathway plays an unexpected role in inflammation, with GzmA acting as an endogenous modulator.
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Nanotechnology offers novel delivery vehicles for cancer therapeutics. Potential advantages of nanoscale platforms include improved pharmacokinetics, encapsulation of cytotoxic agents, enhanced accumulation of therapeutics in the tumor microenvironment, and improved therapeutic structures and bioactivity. Here, we report the design of a novel amphiphilic molecule that self-assembles into nanostructures for intracellular delivery of cytotoxic peptides. Specifically, a cationic α-helical (KLAKLAK) 2 peptide that is known to induce cancer cell death by membrane disruption was integrated into a peptide amphiphile (PA) that self-assembles into bioactive, cylindrical nanofibers. PAs are composed of a hydrophobic alkyl tail, a β-sheet forming peptide, and a bioactive peptide that is displayed on the surface of the nanofiber after self-assembly. PA nanostructures that included (KLAKLAK) 2 were readily internalized by breast cancer cells, in contrast to the (KLAKLAK) 2 peptide that on its own was not cell permeable. (KLAKLAK) 2 nanostructures, but not the peptides alone, also induced breast cancer cell death by caspase-independent and Bax/Bak-independent mechanisms associated with membrane disruption. Significantly, (KLAKLAK) 2 nanostructures induced cell death more robustly in transformed breast epithelial cells than in untransformed cells, suggesting a degree of tumor selectivity. Our results provide proof-of-principle that self-assembling PAs can be rationally designed to generate nanostructures that can efficiently deliver cytotoxic peptides to cancer cells. Cancer Res; 70(8); 3020-6. ©2010 AACR.
Cells that are sensitive to the channel-forming toxin aerolysin contain surface glycoproteins that bind the toxin with high affinity. Here we show that a common feature of aerolysin receptors is the presence of a glycosylphosphatidylinositol anchor, and we present evidence that the anchor itself is an essential part of the toxin binding determinant. The glycosylphosphatidylinositol (GPI)-anchored T-lymphocyte protein Thy-1 is an example of a protein that acts as an aerolysin receptor. This protein retained its ability to bind aerolysin when it was expressed in Chinese hamster ovary cells, but could not bind the toxin when expressed in Escherichia coli, where the GPI anchor is absent. An unrelated GPI-anchored protein, the variant surface glycoprotein of trypanosomes, was shown to bind aerolysin with similar affinity to Thy-1, and this binding ability was significantly reduced when the anchor was removed chemically. Cathepsin D, a protein with no affinity for aerolysin, was converted to an aerolysin binding form when it was expressed as a GPI-anchored hybrid in COS cells. Not all GPI-anchored proteins bind aerolysin. In some cases this may be due to differences in the structure of the anchor itself. Thus the GPI-anchored proteins procyclin of Trypanosoma congolense and gp63 of Leishmania major did not bind aerolysin, but when gp63 was expressed with a mammalian GPI anchor in Chinese hamster ovary cells, it bound the toxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.