ObjectivesAir pollution contributes to mortality and morbidity. We estimated the impact of outdoor air pollution on public health in Seoul metropolitan area, Korea. Attributable cases of morbidity and mortality were estimated.MethodsEpidemiology-based exposure-response functions for a 10 μg/m3 increase in particulate matter (PM2.5 and PM10) were used to quantify the effects of air pollution. Cases attributable to air pollution were estimated for mortality (adults ≥ 30 years), respiratory and cardiovascular hospital admissions (all ages), chronic bronchitis (all ages), and acute bronchitis episodes (≤18 years). Environmental exposure (PM2.5 and PM10) was modeled for each 3 km × 3 km.ResultsIn 2010, air pollution caused 15.9% of total mortality or approximately 15,346 attributable cases per year. Particulate air pollution also accounted for: 12,511 hospitalized cases of respiratory disease; 20,490 new cases of chronic bronchitis (adults); 278,346 episodes of acute bronchitis (children). After performing the 2nd Seoul metropolitan air pollution management plan, the reducible death number associated with air pollution is 14,915 cases per year in 2024. We can reduce 57.9% of death associated with air pollution.ConclusionThis assessment estimates the public-health impacts of current patterns of air pollution. Although individual health risks of air pollution are relatively small, the public-health consequences are remarkable. Particulate air pollution remains a key target for public-health action in the Seoul metropolitan area. Our results, which have also been used for economic valuation, should guide decisions on the assessment of environmental health-policy options.
This study suggests a new modeling framework using a hybrid Eulerian-Lagrangian-based modeling tool (the Screening Trajectory Ozone Prediction System, STOPS) for a prediction of an Asian dust event in Korea. The new version of STOPS (v1.5) has been implemented into the Community Multi-scale Air Quality (CMAQ) model version 5.0.2. The STOPS modeling system is a moving nest (Lagrangian approach) between the source and the receptor inside the host Eulerian CMAQ model. The proposed model generates simulation results that are relatively consistent with those of CMAQ but within a comparatively shorter computational time period. We find that standard CMAQ generally underestimates PM 10 concentrations during the simulation period (February 2015) and fails to capture PM 10 peaks during Asian dust events (22-24 February 2015). The underestimation in PM 10 concentration is very likely due to missing dust emissions in CMAQ rather than incorrectly simulated meteorology, as the model meteorology agrees well with the observations. To improve the underestimated PM 10 results from CMAQ, we used the STOPS model with constrained PM concentrations based on aerosol optical depth (AOD) data from the Geostationary Ocean Color Imager (GOCI), reflecting real-time initial and boundary conditions of dust particles near the Korean Peninsula. The simulated PM 10 from the STOPS simulations were improved significantly and closely matched the surface observations. With additional verification of the capabilities of the methodology on emission estimations and more STOPS simulations for various time periods, the STOPS model could prove to be a useful tool not just for the predictions of Asian dust but also for other unexpected events such as wildfires and oil spills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.